Deep Variation-Structured Reinforcement Learning For Visual Relationship And Attribute Detection

Xiaodan Liang大牛学者,Lisa Lee,Eric P. Xing大牛学者

30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017)(2017)

引用 286|浏览61
暂无评分
摘要
Computers still struggle to understand the interdependency of objects in the scene as a whole, e.g., relations between objects or their attributes. Existing methods often ignore global context cues capturing the interactions among different object instances, and can only recognize a handful of types by exhaustively training individual detectors for all possible relationships. To capture such global interdependency, we propose a deep Variation-structured Reinforcement Learning (VRL) framework to sequentially discover object relationships and attributes in the whole image. First, a directed semantic action graph is built using language priors to provide a rich and compact representation of semantic correlations between object categories, predicates, and attributes. Next, we use a variationstructured traversal over the action graph to construct a small, adaptive action set for each step based on the current state and historical actions. In particular, an ambiguityaware object mining scheme is used to resolve semantic ambiguity among object categories that the object detector fails to distinguish. We then make sequential predictions using a deep RL framework, incorporating global context cues and semantic embeddings of previously extracted phrases in the state vector. Our experiments on the Visual Relationship Detection (VRD) dataset and the large-scale Visual Genome dataset validate the superiority of VRL, which can achieve significantly better detection results on datasets involving thousands of relationship and attribute types. We also demonstrate that VRL is able to predict unseen types embedded in our action graph by learning correlations on shared graph nodes.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络