An efficient microcalcifications detection based on dual spatial/spectral processing

Multimedia Tools Appl.(2016)

引用 14|浏览14
暂无评分
摘要
Microcalcifications are tiny deposits of calcium located in breast tissue. They appeared as very small highlighted regions in comparison with their surrounding tissue. Spatial non linear enhancement can be applied for microcalcification detection. However, efficiency of a such approach depends on breast density: in case of extreme breast density, the contrast between microcalcification’s details and their surrounding tissue is attenuated leading to a limitation of spatially based approaches. In that case, frequency analysis such as wavelet based analysis can be more relevant for dissociating microcalcifications. The main goal of Computer Aided Detection systems (CAD) is to detect breast cancer at an early stage for all breast density classes by using entropies to enhance and then detect microcalcification details. Accordingly, we combine our approach a spatial Automatic Non Linear Stretching (ANLS) and Shannon Entropy based Wavelet Coefficient Thresholding (SE_WCT). Validation of the proposed approach is done on the Mammographic Image Analysis Society (MIAS) database. The evaluation of the contrast is based on the Second-Derivative-Like measure of enhancement(SDME). Accordingly, it yields to a mean SDME of 78.8dB on the whole database. The performance metric for evaluating our proposed CAD is the Receiver Operating Characteristic(ROC) curve and the free-response ROC (FROC). An area under the ROC curve A z = 0.92 is obtained as well as 97.14 % of True Positives (TP) with 0,48 False positives per image (FP).
更多
查看译文
关键词
Mammogram,Breast tissue,Microcalcification,Enhancement,ANLS,Wavelet transform,Otsu
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要