Effect of the Long-Term Mean and the Temporal Stability of Water-Energy Dynamics on China's Terrestrial Species Richness.

ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION(2017)

引用 4|浏览24
暂无评分
摘要
Water-energy dynamics broadly regulate species richness gradients but are being altered by climate change and anthropogenic activities; however, the current methods used to quantify this phenomenon overlook the non-linear dynamics of climatic time-series data. To analyze the gradient of species richness in China using water-energy dynamics, this study used linear regression to examine how species richness is related to (1) the long-term mean of evapotranspiration (ET) and potential evapotranspiration (PET) and (2) the temporal stability of ET and PET. ET and PET were used to represent the water-energy dynamics of the terrestrial area. Changes in water-energy dynamics over the 14-year period (2000 to 2013) were also analyzed. The long-term mean of ET was strong and positively (R-2 is an element of (0.40 similar to 0.67), p < 0.05) correlated with the species richness gradients. Regions in which changes in land cover have occurred over the 14-year period (2000 to 2013) were detected from long-term trends. The high level of species richness in all groups (birds, mammals, and amphibians) was associated with relatively high ET, determinism (i.e., predictability), and entropy (i.e., complexity). ET, rather than PET or temporal stability measures, was an effective proxy of species richness in regions of China that had moderate energy (PET > 1000 mm/year), especially for amphibians. In addition, predictions of species richness were improved by incorporating information on the temporal stability of ET with long-term means. Amphibians are more sensitive to the long-term ET mean than other groups due to their unique physiological requirements and evolutionary processes. Our results confirmed that ET and PET were strongly and significantly correlated with climatic and anthropogenic induced changes, providing useful information for conservation planning. Therefore, climate management based on changes to water-energy dynamics via land management practices, including reforestation, should be considered when planning methods to conserve natural resources to protect biodiversity.
更多
查看译文
关键词
terrestrial biodiversity protection,recurrence quantification analysis (RQA),evapotranspiration (ET)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要