Adverse Heart-lung Interactions in Ventilator-induced Lung Injury.

AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE(2017)

引用 57|浏览20
暂无评分
摘要
Rationale: In the original 1974 in vivo study of ventilator-induced lung injury, Webb and Tierney reported that high V-T with zero positive end-expiratory pressure caused overwhelming lung injury, subsequently shown by others to be due to lung shear stress. Objectives: To reproduce the lung injury and edema examined in the Webb and Tierney study and to investigate the underlying mechanism thereof. Methods: Sprague-Dawley rats weighing approximately 400 g received mechanical ventilation for 60 minutes according to the protocol of Webb and Tierney (airway pressures of 14/0, 30/0, 45/10, 45/0 cm H2O). Additional series of experiments (20 min in duration to ensure all animals survived) were studied to assess permeability (n = 4 per group), echocardiography (n = 4 per group), and right and left ventricular pressure (n = 5 and n = 4 per group, respectively). Measurements and Main Results: The original Webb and Tierney results were replicated interms of lung/body weight ratio (45/0.45/10 approximate to 30/0 approximate to 14/0; P < 0.05) and histology. In 45/0, pulmonary edema was overt and rapid, with survival less than 30 minutes. In 45/0 (but not 45/10), there was an increase in microvascular permeability, cyclical abolition of preload, and progressive dilation of the right ventricle. Although left ventricular end-diastolic pressure decreased in 45/10, it increased in 45/0. Conclusions: In a classic model of ventilator-induced lung injury, high peak pressure (and zero positive end-expiratory pressure) causes respiratory swings (obliteration during inspiration) in right ventricular filling and pulmonary perfusion, ultimately resulting in right ventricular failure anddilation. Pulmonary edema was due to increased permeability, which was augmented by a modest (approximately 40%) increase in hydrostatic pressure. The lung injury and acute cor pulmonale is likely due to pulmonary microvascular injury, the mechanism of which is uncertain, but which may be due to cyclic interruption and exaggeration of pulmonary blood flow.
更多
查看译文
关键词
lung injury,preload,microvascular injury,cor pulmonale
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要