Approximation Algorithms for Capacitated k-Travelling Repairmen Problems.

ISAAC(2016)

引用 23|浏览9
暂无评分
摘要
study variants of the capacitated vehicle routing problem. In the multiple depot capacitated k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply at its original depot. wish to route the vehicles in a way that obeys the constraints while minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot k-Travelling Repairman Problem (MD-kTRP) [Chekuri and Kumar, IEEE-FOCS, 2003; Post and Swamy, ACM-SIAM SODA, 2015] to the capacitated vehicle setting, and while it has been previously studied [Lysgaard and Wohlk, EJOR, 2014; Rivera et al, Comput Optim Appl, 2015], no approximation algorithm with a proven ratio is known. We give a 42.49-approximation to this general problem, and refine this constant to 25.49 when clients have unit demands. As far as we are aware, these are the first constant-factor approximations for capacitated vehicle routing problems with a latency objective. achieve these results by developing a framework allowing us to solve a wider range of latency problems, and crafting various orienteering-style oracles for use in this framework. also show a simple LP rounding algorithm has a better approximation ratio for the maximum coverage problem with groups (MCG), first studied by Chekuri and Kumar [APPROX, 2004], and use it as a subroutine in our framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting matches the best known bound for it [Post and Swamy, ACM-SIAM SODA, 2015]. With our framework, any improvements to our oracles or our MCG approximation will result in improved approximations to the corresponding k-TRP problem.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要