Expanded GDoF-optimality Regime of Treating Interference as Noise in the $M\\times 2$ X-Channel

IEEE Trans. Information Theory(2017)

引用 17|浏览5
暂无评分
摘要
Treating interference as noise (TIN) as the most appropriate approach in dealing with interference and the conditions on its optimality has attracted the interest of researchers recently. However, our knowledge on necessary and sufficient conditions of TIN is restricted to a few setups with limited number of users. In this paper, we study the optimality of TIN in terms of the generalized degrees of freedom (GDoF) for a fundamental network, namely, the $M\\times 2$ X-channel. To this end, the achievable GDoF of TIN with power allocations at the transmitters is studied. It turns out that the transmit power allocation maximizing the achievable GDOF is given by on–off signaling as long as the receivers use TIN. This leads to two variants of TIN, namely, P2P-TIN and 2-IC-TIN. While in the first variant the $M\\times 2$ X-channel is reduced to a point-to-point (P2P) channel, in the second variant, the setup is reduced to a two-user interference channel in which the receivers use TIN. The optimality of these two variants is studied separately. To this end, novel genie-aided upper bounds on the capacity of the X-channel are established. The conditions on the optimality of P2P-TIN can be summarized as follows. P2P-TIN is GDoF-optimal if there exists a dominant multiple access channel or a dominant broadcast channel embedded in the X channel. Furthermore, the necessary and sufficient conditions on the GDoF-optimality of 2-IC-TIN are presented. Interestingly, it turns out that operating the $M\\times 2$ X-channel in the 2-IC-TIN mode might be still GDOF optimal, although the conditions given by Geng et al. are violated. However, 2-IC-TIN is sub-optimal if there exists a single interferer which causes sufficiently strong interference at both receivers. The comparison of the results with the state of the art shows that the GDOF optimality of TIN is expanded significantldy.
更多
查看译文
关键词
Tin,Interference,Integrated circuits,Receivers,Transmitters,Upper bound,Random variables
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要