Generative Adversarial Networks recover features in astrophysical images of galaxies beyond the deconvolution limit.

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY(2017)

引用 186|浏览12
暂无评分
摘要
Observations of astrophysical objects such as galaxies are limited by various sources of random and systematic noise from the sky background, the optical system of the telescope and the detector used to record the data. Conventional deconvolution techniques are limited in their ability to recover features in imaging data by the Shannon-Nyquist sampling theorem. Here, we train a generative adversarial network (GAN) on a sample of 4550 images of nearby galaxies at 0.01 < z < 0.02 from the Sloan Digital Sky Survey and conduct 10x cross-validation to evaluate the results. We present a method using a GAN trained on galaxy images that can recover features from artificially degraded images with worse seeing and higher noise than the original with a performance that far exceeds simple deconvolution. The ability to better recover detailed features such as galaxy morphology from low signal to noise and low angular resolution imaging data significantly increases our ability to study existing data sets of astrophysical objects as well as future observations with observatories such as the Large Synoptic Sky Telescope (LSST) and the Hubble and James Webb space telescopes.
更多
查看译文
关键词
methods: data analysis,techniques: image processing,galaxies: general
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要