Neural Combinatorial Optimization with Reinforcement Learning.

ICLR(2017)

引用 39|浏览296
暂无评分
摘要
This paper presents a framework to tackle combinatorial optimization problems using neural networks and reinforcement learning. We focus on the traveling salesman problem (TSP) and train a recurrent neural network that, given a set of city coordinates, predicts a distribution over different city permutations. Using negative tour length as the reward signal, we optimize the parameters of the recurrent neural network using a policy gradient method. We compare learning the network parameters on a set of training graphs against learning them on individual test graphs. Without much engineering and heuristic designing, Neural Combinatorial Optimization achieves close to optimal results on 2D Euclidean graphs with up to 100 nodes. Applied to the KnapSack, another NP-hard problem, the same method obtains optimal solutions for instances with up to 200 items. These results, albeit still far from state-of-the-art, give insights into how neural networks can be used as a general tool for tackling combinatorial optimization problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要