Don'T Get Caught In The Cold, Warm-Up Your Jvm Understand And Eliminate Jvm Warm-Up Overhead In Data-Parallel Systems

OSDI'16: Proceedings of the 12th USENIX conference on Operating Systems Design and Implementation(2016)

引用 97|浏览138
暂无评分
摘要
Many widely used, latency sensitive, data-parallel distributed systems, such as HDFS, Hive, and Spark choose to use the Java Virtual Machine (JVM), despite debate on the overhead of doing so. This paper analyzes the extent and causes of the JVM performance overhead in the above mentioned systems. Surprisingly, we find that the warm-up overhead, i.e., class loading and interpretation of bytecode, is frequently the bottleneck. For example, even an I/O intensive, 1GB read on HDFS spends 33% of its execution time in JVM warm-up, and Spark queries spend an average of 21 seconds in warm-up.The findings on JVM warm-up overhead reveal a contradiction between the principle of parallelization, i.e., speeding up long running jobs by parallelizing them into short tasks, and amortizing JVM warm-up overhead through long tasks. We solve this problem by designing HotTub, a new JVM that amortizes the warm-up overhead over the lifetime of a cluster node instead of over a single job by reusing a pool of already warm JVMs across multiple applications. The speed-up is significant. For example, using HotTub results in up to 1.8X speedups for Spark queries, despite not adhering to the JVM specification in edge cases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要