Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evolutionary Algorithms

UCNC(2016)

引用 6|浏览20
暂无评分
摘要
Evolution-in-Materio uses evolutionary algorithms (EA) to exploit the physical properties of unconfigured, physically rich materials, in effect transforming them into information processors. The potential of this technique for machine learning problems is explored here. Results are obtained from a mixture of single walled carbon nanotubes and liquid crystals (SWCNT/LC). The complex nature of the voltage/current relationship of this material presents a potential for adaptation. Here, it is used as a computational medium evolved by two derivative-free, population-based stochastic search algorithms, particle swarm optimisation (PSO) and differential evolution (DE). The computational problem considered is data classification. A custom made electronic motherboard for interacting with the material has been developed, which allows the application of control signals on the material body. Starting with a simple binary classification problem of separable data, the material is trained with an error minimisation objective for both algorithms. Subsequently, the solution, defined as the combination of the material itself and optimal inputs, is verified and results are reported. The evolution process based on EAs has the capacity to evolve the material to a state where data classification can be performed. PSO outperforms DE in terms of results’ reproducibility due to the smoother, as opposed to more noisy, inputs applied on the material.
更多
查看译文
关键词
Particle Swarm Optimisation,Differential Evolution,Particle Swarm Optimisation Algorithm,Single Walled Carbon Nanotubes,Differential Evolution Algorithm
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要