Optimal Stochastic Strongly Convex Optimization with a Logarithmic Number of Projections

UAI'16: Proceedings of the Thirty-Second Conference on Uncertainty in Artificial Intelligence(2016)

引用 0|浏览47
暂无评分
摘要
We consider stochastic strongly convex optimization with a complex inequality constraint. This complex inequality constraint may lead to computationally expensive projections in algorithmic iterations of the stochastic gradient descent~(SGD) methods. To reduce the computation costs pertaining to the projections, we propose an Epoch-Projection Stochastic Gradient Descent~(Epro-SGD) method. The proposed Epro-SGD method consists of a sequence of epochs; it applies SGD to an augmented objective function at each iteration within the epoch, and then performs a projection at the end of each epoch. Given a strongly convex optimization and for a total number of $T$ iterations, Epro-SGD requires only $\log(T)$ projections, and meanwhile attains an optimal convergence rate of $O(1/T)$, both in expectation and with a high probability. To exploit the structure of the optimization problem, we propose a proximal variant of Epro-SGD, namely Epro-ORDA, based on the optimal regularized dual averaging method. We apply the proposed methods on real-world applications; the empirical results demonstrate the effectiveness of our methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要