Are Static Schedules So Bad ? A Case Study On Cholesky Factorization

2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS)(2016)

引用 40|浏览66
暂无评分
摘要
Our goal is to provide an analysis and comparison of static and dynamic strategies for task graph scheduling on platforms consisting of heterogeneous and unrelated resources, such as GPUs and CPUs. Static scheduling strategies, that have been used for years, suffer several weaknesses. First, it is well known that underlying optimization problems are NP-Complete, what limits the capability of finding optimal solutions to small cases. Second, parallelism inside processing nodes makes it difficult to precisely predict the performance of both communications and computations, due to shared resources and co-scheduling effects. Recently, to cope with this limitations, many dynamic task-graph based runtime schedulers (StarPU, StarSs, QUARK, PaRSEC) have been proposed. Dynamic schedulers base their allocation and scheduling decisions on the one side on dynamic information such as the set of available tasks, the location of data and the state of the resources and on the other hand on static information such as task priorities computed from the whole task graph. Our analysis is deep but we concentrate on a single kernel, namely Cholesky factorization of dense matrices on platforms consisting of GPUs and CPUs. This application encompasses many important characteristics in our context. Indeed, it involves 4 different kernels (POTRF, TRSM, SYRK and GEMM) whose acceleration ratios on GPUs are strongly different (from 2.3 for POTRF to 29 for GEMM) and it consists in a phase where the number of available tasks if large, where the careful use of resources is critical, and in a phase with few tasks available, where the choice of the task to be executed is crucial. In this paper, we analyze the performance of static and dynamic strategies and we propose a set of intermediate strategies, by adding more static (resp. dynamic) features into dynamic (resp. static) strategies. Our conclusions are somehow unexpected in the sense that we prove that static-based strategies are very efficient, even in a context where performance estimations are not very good.
更多
查看译文
关键词
Runtime Systems,Scheduling,Accelerators,Cholesky,Heterogeneous Systems,Unrelated Machines
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要