Computational Analysis Of Sparsity-Exploiting Moment Relaxations Of The Opf Problem

2016 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC)(2016)

引用 4|浏览9
暂无评分
摘要
With the potential to find global solutions, significant research interest has focused on convex relaxations of the non-convex OPF problem. Recently, "moment-based" relaxations from the Lasserre hierarchy for polynomial optimization have been shown capable of globally solving a broad class of OPF problems. Global solution of many large-scale test cases is accomplished by exploiting sparsity and selectively applying the computationally intensive higher-order relaxation constraints. Previous work describes an iterative algorithm that indicates the buses for which the higher-order constraints should be enforced. In order to speed computation of the moment relaxations, this paper provides a study of the key parameter in this algorithm as applied to relaxations from both the original Lasserre hierarchy and a recent complex extension of the Lasserre hierarchy.
更多
查看译文
关键词
Optimal power flow,Global optimization,Moment relaxation,Semidefinite programming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要