Enable Scale and Aspect Ratio Adaptability in Visual Tracking with Detection Proposals.

BMVC(2015)

引用 82|浏览90
暂无评分
摘要
Among increasingly complicated trackers in visual tracking area, recently proposed correlation filter based trackers have achieved appealing performance despite their great simplicity and superior speed. However, the filter input is a bounding box of fixed size, so they are not born with the adaptability to target’s scale and aspect ratio changes. Although scaleadaptive variants have been proposed, they are not flexible enough due to pre-defined scale sampling manners. Moreover, to the best of our knowledge, no correlation filter variant has been proposed to handle aspect ratio variation. To tackle this problem, this paper integrates the class-agnostic detection proposal method, which is widely adopted in object detection area, into a correlation filter tracker, and presents KCFDP tracker. The correlation filter part of KCFDP is based on KCF[2] with some modifications. We extend the HOG feature in KCF to a combination of HOG, intensity, and color naming by simply concatenating the three features, resulting in 42 feature channels. The model updating scheme in KCF, which is simple linear interpolation, is substituted with a more robust scheme presented in [1]. EdgeBoxes[4] is adopted to generate flexible detection proposals and enable the scale and aspect ratio adaptability of our tracker. It traverses the whole image in a sliding window manner, and scores every sampled bounding box according to the number of contours that are wholly enclosed. To accelerate EdgeBoxes and produce less unnecessary proposals, we set the minimum proposal area and aspect ratio range dynamically in sliding window sampling according to the current target size. In the tracking pipeline, KCF is firstly performed to estimate the preliminary target location ld . Within a patch zd extracted from current frame, KCF locates the target center according to the location of the maximum element in f : f(zd) = kxz d · α, (1)
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要