Sequence to Sequence Training of CTC-RNNs with Partial Windowing.

ICML'16: Proceedings of the 33rd International Conference on International Conference on Machine Learning - Volume 48(2016)

引用 17|浏览62
暂无评分
摘要
Connectionist temporal classification (CTC) based supervised sequence training of recurrent neural networks (RNNs) has shown great success in many machine learning areas including end-to-end speech and handwritten character recognition. For the CTC training, however, it is required to unroll (or unfold) the RNN by the length of an input sequence. This unrolling requires a lot of memory and hinders a small footprint implementation of online learning or adaptation. Furthermore, the length of training sequences is usually not uniform, which makes parallel training with multiple sequences inefficient on shared memory models such as graphics processing units (GPUs). In this work, we introduce an expectation-maximization (EM) based online CTC algorithm that enables unidirectional RNNs to learn sequences that are longer than the amount of unrolling. The RNNs can also be trained to process an infinitely long input sequence without pre-segmentation or external reset. Moreover, the proposed approach allows efficient parallel training on GPUs. Our approach achieves 20.7% phoneme error rate (PER) on the very long input sequence that is generated by concatenating all 192 utterances in the TIMIT core test set. In the end-to-end speech recognition task on the Wall Street Journal corpus, a network can be trained with only 64 times of unrolling with little performance loss.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要