On the impossibility of entropy reversal, and its application to zero-knowledge proofs.

Theory of Cryptography: 15th International Conference, TCC 2017, Baltimore, MD, USA, November 12-15, 2017, Proceedings, Part I(2016)

引用 5|浏览34
暂无评分
摘要
Zero knowledge proof systems have been widely studied in cryptography. In the statistical setting, two classes of proof systems studied are Statistical Zero Knowledge (SZK) and Non-Interactive Statistical Zero Knowledge (NISZK), where the difference is that in NISZK only very limited communication is allowed between the verifier and the prover. It is an open problem whether these two classes are in fact equal. In this paper, we rule out efficient black box reductions between SZK and NISZK. We achieve this by studying algorithms which can reverse the entropy of a function. The problem of estimating the entropy of a circuit is complete for NISZK. Hence, reversing the entropy of a function is equivalent to a black box reduction of NISZK to its complement, which is known to be equivalent to a black box reduction of SZK to NISZK [Goldreich et al. CRYPTO 1999]. We show that any such black box algorithm incurs an exponential loss of parameters, and hence cannot be implemented efficiently.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要