Fully dynamic all-pairs shortest paths with worst-case update-time revisited

SODA '17: Symposium on Discrete Algorithms Barcelona Spain January, 2017(2016)

引用 12|浏览18
暂无评分
摘要
We revisit the classic problem of dynamically maintaining shortest paths between all pairs of nodes of a directed weighted graph. The allowed updates are insertions and deletions of nodes and their incident edges. We give worst-case guarantees on the time needed to process a single update (in contrast to related results, the update time is not amortized over a sequence of updates). Our main result is a simple randomized algorithm that for any parameter $c>1$ has a worst-case update time of $O(cn^{2+2/3} \log^{4/3}{n})$ and answers distance queries correctly with probability $1-1/n^c$, against an adaptive online adversary if the graph contains no negative cycle. The best deterministic algorithm is by Thorup \citem[STOC 2005]{Thorup05} with a worst-case update time of $\tilde O(n^{2+3/4})$ and assumes non-negative weights. This is the first improvement for this problem for more than a decade. Conceptually, our algorithm shows that randomization along with a more direct approach can provide better bounds.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要