Kronecker Determinantal Point Processes

ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016)(2016)

引用 29|浏览45
暂无评分
摘要
Determinantal Point Processes (DPPs) are probabilistic models over all subsets a ground set of N items. They have recently gained prominence in several applications that rely on "diverse" subsets. However, their applicability to large problems is still limited due to O(N-3) complexity of core tasks such as sampling and learning. We enable efficient sampling and learning for DPPs by introducing KRONDPP, a DPP model whose kernel matrix decomposes as a tensor product of multiple smaller kernel matrices. This decomposition immediately enables fast exact sampling. But contrary to what one may expect, leveraging the Kronecker product structure for speeding up DPP learning turns out to be more difficult. We overcome this challenge, and derive batch and stochastic optimization algorithms for efficiently learning the parameters of a KRONDPP.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要