Scalable Distributed Stream Join Processing

MOD(2015)

引用 101|浏览182
暂无评分
摘要
Efficient and scalable stream joins play an important role in performing real-time analytics for many cloud applications. However, like in conventional database processing, online theta-joins over data streams are computationally expensive and moreover, being memory-based processing, they impose high memory requirement on the system. In this paper, we propose a novel stream join model, called join-biclique, which organizes a large cluster as a complete bipartite graph. Join-biclique has several strengths over state-of-the-art techniques, including memory-efficiency, elasticity and scalability. These features are essential for building efficient and scalable streaming systems. Based on join-biclique, we develop a scalable distributed stream join system, BiStream, over a large-scale commodity cluster. Specifically, BiStream is designed to support efficient full-history joins, window-based joins and online data aggregation. BiStream also supports adaptive resource management to dynamically scale out and down the system according to its application workloads. We provide both theoretical cost analysis and extensive experimental evaluations to evaluate the efficiency, elasticity and scalability of BiStream.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要