The Complexity of Computing the Optimal Composition of Differential Privacy

TCC 2016-A: Proceedings, Part I, of the 13th International Conference on Theory of Cryptography - Volume 9562(2016)

引用 29|浏览64
暂无评分
摘要
In the study of differential privacy, composition theorems (starting with the original paper of Dwork, McSherry, Nissim, and Smith (TCC'06)) bound the degradation of privacy when composing several differentially private algorithms. Kairouz, Oh, and Viswanath (ICML'15) showed how to compute the optimal bound for composing $k$ arbitrary $(\epsilon,\delta)$-differentially private algorithms. We characterize the optimal composition for the more general case of $k$ arbitrary $(\epsilon_{1},\delta_{1}),\ldots,(\epsilon_{k},\delta_{k})$-differentially private algorithms where the privacy parameters may differ for each algorithm in the composition. We show that computing the optimal composition in general is $\#$P-complete. Since computing optimal composition exactly is infeasible (unless FP=$\#$P), we give an approximation algorithm that computes the composition to arbitrary accuracy in polynomial time. The algorithm is a modification of Dyer's dynamic programming approach to approximately counting solutions to knapsack problems (STOC'03).
更多
查看译文
关键词
Differential privacy,Composition,Computational complexity,Approximation algorithms
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要