Optimizing Inter-Data-Center Large-Scale Database Parallel Replication With Workload-Driven Partitioning

Special Issue on Database- and Expert-Systems Applications on Transactions on Large-Scale Data- and Knowledge-Centered Systems XXIV - Volume 9510(2016)

引用 1|浏览16
暂无评分
摘要
Geographically distributed data centers are deployed for non-stop business operations by many enterprises. In case of disastrous events, ongoing workloads must be failed over from the current data center to another active one within just a few seconds to achieve continuous service availability. Software-based parallel database replication techniques are designed to meet very high throughput with near-real-time latency. Understanding workload characteristics is one of the key factors for improving replication performance. In this paper, we propose a workload-driven method to optimize database replication latency and minimize transaction splits with a minimum of parallel replication consistency groups. Our two-phased approach includes (1) a log-based mechanism for workload pattern discovery; (2) a history-based algorithm on pattern analysis, database partitioning and partition adjustment. The experimental results from a real banking batch workload and a benchmark OLTP workload demonstrate the effectiveness of the solution even for partitioning 1000 s of database tables in very large workloads. Finally, the algorithm to automate the cyclic flow of workload profile capturing and partitioning readjustment is developed and verified.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要