Forecasting The Cost Of Processing Multi-Join Queries Via Hashing For Main-Memory Databases

SoCC '15: ACM Symposium on Cloud Computing Kohala Coast Hawaii August, 2015(2015)

引用 16|浏览23
暂无评分
摘要
Database management systems (DBMSs) carefully optimize complex multi-join queries to avoid expensive disk I/O. As servers today feature tens or hundreds of gigabytes of RAM, a significant fraction of many analytic databases becomes memory-resident. Even after careful tuning for an in-memory environment, a linear disk I/O model such as the one implemented in PostgreSQL may make query response time predictions that are up to 2x slower than the optimal multi-join query plan over memory-resident data. This paper introduces a memory I/O cost model to identify good evaluation strategies for complex query plans with multiple hash-based equi-joins over memory-resident data. The proposed cost model is carefully validated for accuracy using three different systems, including an Amazon EC2 instance, to control for hardware-specific differences. Prior work in parallel query evaluation has advocated right-deep and bushy trees for multi-join queries due to their greater parallelization and pipelining potential. A surprising finding is that the conventional wisdom from shared-nothing disk-based systems does not directly apply to the modern shared-everything memory hierarchy. As corroborated by our model, the performance gap between the optimal left-deep and right-deep query plan can grow to about 10x as the number of joins in the query increases.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要