Adding Gradient Noise Improves Learning for Very Deep Networks.

arXiv: Machine Learning(2017)

引用 574|浏览446
暂无评分
摘要
Deep feedforward and recurrent networks have achieved impressive results in many perception and language processing applications. Recently, more complex architectures such as Neural Turing Machines and Memory Networks have been proposed for tasks including question answering and general computation, creating a new set of optimization challenges. In this paper, we explore the low-overhead and easy-to-implement optimization technique of adding annealed Gaussian noise to the gradient, which we find surprisingly effective when training these very deep architectures. Unlike classical weight noise, gradient noise injection is complementary to advanced stochastic optimization algorithms such as Adam and AdaGrad. The technique not only helps to avoid overfitting, but also can result in lower training loss. We see consistent improvements in performance across an array of complex models, including state-of-the-art deep networks for question answering and algorithm learning. We observe that this optimization strategy allows a fully-connected 20-layer deep network to escape a bad initialization with standard stochastic gradient descent. We encourage further application of this technique to additional modern neural architectures.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要