On Active and Passive Testing.

Combinatorics, Probability & Computing(2016)

引用 5|浏览34
暂无评分
摘要
Given a property of Boolean functions, what is the minimum number of queries required to determine with high probability if an input function satisfies this property or is "far" from satisfying it? This is a fundamental question in Property Testing, where traditionally the testing algorithm is allowed to pick its queries among the entire set of inputs. Balcan, Blais, Blum and Yang have recently suggested to restrict the tester to take its queries from a smaller random subset of polynomial size of the inputs. This model is called active testing, and in the extreme case when the size of the set we can query from is exactly the number of queries performed it is known as passive testing. We prove that passive or active testing of k-linear functions (that is, sums of k variables among n over Z_2) requires Theta(k*log n) queries, assuming k is not too large. This extends the case k=1, (that is, dictator functions), analyzed by Balcan et. al. We also consider other classes of functions including low degree polynomials, juntas, and partially symmetric functions. Our methods combine algebraic, combinatorial, and probabilistic techniques, including the Talagrand concentration inequality and the Erdos--Rado theorem on Delta-systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要