Design of Low-Voltage Integrated Step-up Oscillators with Microtransformers for Energy Harvesting Applications

IEEE Transactions on Circuits and Systems(2015)

引用 23|浏览89
暂无评分
摘要
This paper describes the modeling of startup circuits in battery-less micropower energy harvesting systems and investigates the use of bond wire micromagnetics. The analysis focuses on step-up Meissner oscillators based on magnetic core transformers operating with input voltages down to $approx$100 mV, e.g., from thermoelectric generators. As a key point, this paper examines the effect of core losses and leakage inductances on the startup requirements obtained with the classical Barkhausen criterion, and demonstrates the minimum transconductance for oscillations to occur. For validation purposes, a step-up oscillator IC is fabricated in a STMicroelectronics 0.32 $mu{rm m}$ technology, and connected to two bond wire microtransformers, respectively, with a 1:38 MnZn ferrite core and with a 1:52 ferromagnetic low-temperature co-fired ceramic (LTCC) core. Coherently with the proposed model, experimental measurements show a minimum startup voltage of 228 mV for the MnZn ferrite core and of 104 mV for the LTCC core.
更多
查看译文
关键词
Bond wire magnetics, energy harvesting, integrated circuits, leakage inductances, magnetic losses, magnetic materials, step-up oscillators, transformers
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要