Inferring reaction systems from ordinary differential equations

Theoretical Computer Science(2015)

引用 49|浏览53
暂无评分
摘要
In Mathematical Biology, many dynamical models of biochemical reaction systems are presented with Ordinary Differential Equations (ODE). Once kinetic parameter values are fixed, this simple mathematical formalism completely defines the dynamical behavior of a system of biochemical reactions and provides powerful tools for deterministic simulations, parameter sensitivity analysis, bifurcation analysis, etc. However, without requiring any information on the reaction kinetics and parameter values, various qualitative analyses can be performed using the structure of the reactions, provided the reactants, products and modifiers of each reaction are precisely defined. In order to apply these structural methods to parametric ODE models, we study a mathematical condition for expressing the consistency between the structure and the kinetics of a reaction, without restricting to Mass Action law kinetics. This condition, satisfied in particular by standard kinetic laws, entails a remarkable property of independence of the influence graph from the kinetics of the reactions. We derive from this study a heuristic algorithm which, given a system of ODEs as input, computes a system of reactions with the same ODE semantics, by inferring well-formed reactions whenever possible. We show how this strategy is capable of automatically curating the writing of ODE models in SBML, and present some statistics obtained on the model repository biomodels.net.
更多
查看译文
关键词
Systems biology,Chemical reaction network theory,Ordinary differential equations,SBML
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要