Impact of Surface Water Layers on Protein-Ligand Binding: How Well Are Experimental Data Reproduced by Molecular Dynamics Simulations in a Thermolysin Test Case?

JOURNAL OF CHEMICAL INFORMATION AND MODELING(2016)

引用 26|浏览83
暂无评分
摘要
Drug binding involves changes of the local water structure around proteins including water rearrangements across surface-solvation layers around protein and ligand portions exposed to the newly formed complex surface. For a series of thermolysin-binding phosphonamidates, we discovered that variations of the partly exposed P2'-substituents modulate binding affinity up to 10 kJ mol(-1) with even larger enthalpy/entropy partitioning of the binding signature. The observed profiles cannot be completely explained by desolvation effects. Instead, the quality and completeness of the surface water network wrapping around the formed complexes provide an explanation for the observed structure-activity relationship. We used molecular dynamics to compute surface water networks and predict solvation sites around the complexes. A fairly good correspondence with experimental difference electron densities in high-resolution crystal structures is achieved; in detail some problems with the potentials were discovered. Charge-assisted contacts to waters appeared as exaggerated by AMBER, and stabilizing contributions of water-to-methyl contacts were underestimated.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要