Jamming-Aided Secure Communication in Massive MIMO Rician Channels

IEEE Transactions on Wireless Communications(2015)

引用 106|浏览107
暂无评分
摘要
In this paper, we investigate the artificial noise-aided jamming design for a transmitter equipped with large antenna array in Rician fading channels. We figure out that when the number of transmit antennas tends to infinity, whether the secrecy outage happens in a Rician channel depends on the geometric locations of eavesdroppers. In this light, we first define and analytically describe the secrecy outage region (SOR), indicating all possible locations of an eavesdropper that can cause secrecy outage. After that, the secrecy outage probability (SOP) is derived, and a jamming-beneficial range, i.e., the distance range of eavesdroppers which enables uniform jamming to reduce the SOP, is determined. Then, the optimal power allocation between messages and artificial noise is investigated for different scenarios. Furthermore, to use the jamming power more efficiently and further reduce the SOP, we propose directional jamming that generates jamming signals at selected beams (mapped to physical angles) only, and power allocation algorithms are proposed for the cases with and without the information of the suspicious area, i.e., possible locations of eavesdroppers. We further extend the discussions to multiuser and multi-cell scenarios. At last, numerical results validate our conclusions and show the effectiveness of our proposed jamming power allocation schemes.
更多
查看译文
关键词
Jamming,massive MIMO,outage,security
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要