SU-E-T-160: Characterization and Monitoring of Linear Accelerator Gantry Radiation Isocenter Motion

MEDICAL PHYSICS(2015)

引用 0|浏览5
暂无评分
摘要
Purpose: To characterize the motion of the radiation isocenter, over time, as a function of gantry rotation for multiple linear accelerators (linacs). Two semi-automated image-based quality control (QC) test workflows were designed to achieve this goal. Methods: The full QC-test workflow for motion characterization consisted of acquiring 16 megavoltage images at 8 gantry angles of a ball-bearing suspended off the end of the couch. Performance constancy was assessed using a shortened QC-test workflow which consisted of imaging a cube phantom placed on the couch (5 images at 4 gantry angles). Both workflows use an image processing algorithm to determine the field center and phantom position on each image and computed radiation isocenter motion as a function of gantry angle. Motion was characterized for 9 linacs of same model and performance monitored for 2 months on 3 linacs. Results: The maximum isocenter motion determined with the full-workflow for 9 linacs was within 0.38–0.79 mm. The shortened-workflow usually agreed within 0.1 mm with the full-workflow and the time required for these methods was about 4 and 15 min, respectively. For all linacs, the isocenter motion perpendicular to the gantry rotation plane followed a consistent pattern with maximum amplitude of 0.36–0.59 mm. In the gantry rotation plane, the variation among linacs was higher and the beam axis described a circle of up to 0.6 mm radius around the gantry axis of rotation (2 linacs). The radiation isocenter motion was stable as a function of time for the monitored linacs and was within ±0.1 mm of the average. Conclusion: Radiation isocenter motion parallel and perpendicular to the gantry rotation plane was characterized. In the gantry rotation plane, beam spot positioning adjustment might be used to reduce the observed radiation isocenter motion. A shortened-workflow was designed and enables performance monitoring over time.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要