Abstract 5009: Identification of DNA methyltransferase target sites in cancer cells

Cancer Research(2014)

引用 0|浏览13
暂无评分
摘要
Aberrant DNA methylation is commonly observed in cancer and is characterized by genome-wide hypomethylation and gene-specific hypermethylation, which is thought to contribute to genomic instability and tumor suppressor gene silencing, respectively. The DNA methyltransferases (DNMTs) are responsible for the establishment (DNMT3A, DNMT3B, DNMT3L) and maintenance (DNMT1) of DNA methylation patterns genome-wide. The mechanism by which DNA methylation patterns are altered in cancer is not well understood. Genome-wide unique and overlapping target sites for each of the DNMTs are also unknown both in normal and cancer states. Identification of DNMT target loci is essential in order to better understand how aberrant DNA methylation occurs in cancer. To study this process, DNMT mRNA levels were depleted both individually and in a combinatorial fashion via RNAi-based techniques in embryonic carcinoma cells. Following reduction in DNMT expression, the resulting DNA and RNA was analyzed for genome-wide DNA methylation and gene expression patterns, respectively. An affinity purification method, Methyl-Binding Domain (MBD)-seq, was used to capture and enrich methylated regions of the genome by utilizing the methyl-binding domain of MBD2b. The enriched methylated DNA was then used to construct an Illumina sequencing library. Global gene expression patterns were analyzed by microarray for each RNA sample. Next generation sequencing and microarray data were analyzed using several available algorithms (e.g. MACS) and high-throughput data software packages (e.g. Partek Genomics Suite) in order to construct and evaluate the DNA methylation profiles and subsequent gene expression changes that result from DNMT depletion. Our data show that distinct changes in DNA methylation profiles occur among the various DNMT knockdown samples that permit us to identify unique and cooperative target loci for each DNMT. Further elucidation of DNMT target sites holds great promise for enhancing our understanding of mechanisms that control aberrant DNA methylation that is observed in cancer as well as provide insight and rationale for targeting specific DNMTs in cancer therapies. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5009. doi:1538-7445.AM2012-5009
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要