Test–Retest Reliability of Graph Metrics in High‐resolution Functional Connectomics: A Resting‐State Functional MRI Study

CNS NEUROSCIENCE & THERAPEUTICS(2015)

引用 37|浏览44
暂无评分
摘要
Background: The combination of resting-state functional MRI (R-fMRI) technique and graph theoretical approaches has emerged as a promising tool for characterizing the topological organization of brain networks, that is, functional connectomics. In particular, the construction and analysis of high-resolution brain connectomics at a voxel scale are important because they do not require prior regional parcellations and provide finer spatial information about brain connectivity. However, the test-retest reliability of voxel-based functional connectomics remains largely unclear. Aims: This study tended to investigate both short-term (similar to 20 min apart) and long-term (6 weeks apart) test-retest (TRT) reliability of graph metrics of voxel-based brain networks. Methods: Based on graph theoretical approaches, we analyzed R-fMRI data from 53 young healthy adults who completed two scanning sessions (session 1 included two scans 20 min apart; session 2 included one scan that was performed after an interval of similar to 6 weeks). Results: The high-resolution networks exhibited prominent small-world and modular properties and included functional hubs mainly located at the default-mode, salience, and executive control systems. Further analysis revealed that test-retest reliabilities of network metrics were sensitive to the scanning orders and intervals, with fair to excellent long-term reliability between Scan 1 and Scan 3 and lower reliability involving Scan 2. In the long-term case (Scan 1 and Scan 3), most network metrics were generally test-retest reliable, with the highest reliability in global metrics in the clustering coefficient and in the nodal metrics in nodal degree and efficiency. Conclusion: We showed high test-retest reliability for graph properties in the high-resolution functional connectomics, which provides important guidance for choosing reliable network metrics and analysis strategies in future studies.
更多
查看译文
关键词
Connectomics,Functional connectivity,Graph theory,Hub,Small world,Test-retest
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要