Interfacial Properties of Carbon–Rubber Interfaces Investigated via Indentation Pull-Out Tests and the JKR Theory

Tribology Letters(2013)

引用 2|浏览10
暂无评分
摘要
Properties of the interface between the filler and the matrix of a composite material draw research attention due to their contributions to the overall properties of the material, especially when the filler and the matrix differ significantly from each other. The work reported in this paper investigates the interface between amorphous carbon and a cross-linked synthetic natural rubber. The interface was experimentally simulated with the surfaces of a sputtering-coated carbon on a spherical Al 2 O 3 tip and a flat synthetic natural rubber sample. Step-loading and pull-out tests with a micro-/nano-indentation instrument were conducted. Fully relaxation of the samples occurred during both test procedures. The penetration depth, applied load, and experimental time were recorded during each test. The Johnson–Kendall–Roberts theory was used to analyze the data at the initial point (step-loading) and the final surface separation point (pull-out) to obtain the initial equivalent modulus, infinite equivalent modulus, work of adhesion, and the average normal interfacial strength at separation. It is found that the pull-out force and the work of adhesion depend on the unloading rate, but the infinite equivalent modulus and the average interfacial strength in the normal direction of the carbon–rubber interfaces are independent of the unloading rate in current experimental domain.
更多
查看译文
关键词
Synthetic natural rubber,Amorphous carbon,Interface,Indentation pull-out
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要