The relative stability of salmon redds and unspawned streambeds

WATER RESOURCES RESEARCH(2015)

引用 22|浏览19
暂无评分
摘要
Where female salmon build nests ("redds"), streambed material is mixed, fine sediment is winnowed, and bed material is moved into a tailspill mound resembling the shape of a dune. Completed redd surfaces are coarser and better sorted than unspawned beds, which is thought to increase redd stability because larger grains are heavier and harder to move, and sorting increases friction angles for mobility. However, spawning also loosens sediment and creates topography that accelerates flow, which can increase particle mobility. We address these factors controlling the relative stability of redds and unspawned beds in flume experiments where redds were constructed with a dynamic technique that mimics the nesting behavior of female salmon. Although redds exhibited relatively coarse surfaces, measured entrainment forces indicate particle loosening by spawning lowered grain resistance to motion by 12-37% on average compared to unspawned beds. In addition, for the same discharges, boundary shear stress was 13-41% higher on a redd due to flow convergence on the tailspill. Visual measurements of particle entrainment further indicated redd instability, as bed-average shear stress was 22% lower at incipient motion and 29% lower at the discharge that mobilized all grain sizes on a redd. Overall, results demonstrate that redds are unstable compared to unspawned beds, which increases the risk of scour for buried eggs but may facilitate fine sediment flushing and improve the quality of spawning gravels for future generations of spawners. Therefore, managing salmon returns to increase streambed disturbance may be an effective tool for reducing sedimentation impacts on salmon reproduction.
更多
查看译文
关键词
sediment transport
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要