Highly pH-sensitive polyurethane exhibiting shape memory and drug release

POLYMER CHEMISTRY(2014)

引用 143|浏览4
暂无评分
摘要
In this study, a highly pH-sensitive polymer is synthesised by introducing pyridine rings into the backbone of polyurethane. The chemical structures of the resulting material are confirmed by FT-IR and H-1-NMR spectroscopy. To analyse the mechanism of the pH sensitivity of this polymer, its structural transformations under acidic and basic conditions are studied by FT-IR spectroscopy, theoretical calculations and H-1-NMR spectroscopy. We observe that the mechanism of pH responsiveness is the formation of a hydrogen bond interaction between the N atom of the pyridine ring and H-N of urethane in neutral or alkaline environments which is disrupted under acidic conditions due to the protonation of the pyridine ring. The pH-sensitivity is demonstrated by simply adjusting the pH value of the environment, which can act as a switch to control shape memory and drug release. Unlike other systems with thermally sensitive behaviour, the shape memory functionality of this material is independent of temperature, which is dependent only on the variation in the pH of the environment. This strategy provides a potent tool for the design of multifunctional materials based on the physiological environment to fulfil the complex requirements of drug delivery and tissue engineering systems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要