Geochemical insights into the role of metasomatic hornblendite in generating alkali basalts

GEOCHEMISTRY GEOPHYSICS GEOSYSTEMS, pp. 3762.0-3779.0, 2014.

Cited by: 29|Views28
Weibo:
The metasomatic hornblendite veins may be common in the SSC lithospheric mantle, and they can serve as the mantle source of SSC alkali basalts

Abstract:

Experimental petrology suggested the role of hornblendite in generating alkali basalt. This mechanism is confirmed by an integrated study of major-trace elements and radiogenic isotopes for Mesozoic alkali basalts from the Qinling orogen in China. The alkali basalts have high contents of MgO (4.8-11.1 wt %, Mg#=47-69), Na2O+K2O (2.9-5.4 w...More

Code:

Data:

0
Full Text
Bibtex
Weibo
Introduction
  • Alkali basalts commonly occur in the interior of plate, typically on updomed and rifted continental crust and on oceanic islands (OIB)
  • They are generally characterized by high contents of alkali metals and normative nepheline in their CIPW norms [Hofmann 1997; Niu and O’Hara, 2003; Niu, 2008; Pilet et al, 2008, 2011; Ma et al, 2011].
  • The major issue for the petrogenesis of alkali basalts is to recognize the contribution from different mantle lithologies and their origin [Sobolev et al, 2005; Niu, 2008; Pilet et al, 2008, 2011]
Highlights
  • Alkali basalts commonly occur in the interior of plate, typically on updomed and rifted continental crust and on oceanic islands (OIB)
  • In order to decipher the origin of alkali basalts in the West Qinling orogen, we have extended the geochemical data from these analyzed in this study to those in the literature
  • The Late Paleozoic subduction of the Paleotethyan oceanic crust and subsequent slab-mantle interaction are suggested as a possible tectonic mechanism for the formation of such a fertile mantle source
  • The reaction of the juvenile subcontinental lithospheric mantle (SCLM) wedge peridotite with felsic melts derived from the subducting oceanic crust would generate the fertile mantle metasomes with ultramafic lithology such as hornblendite
  • Partial melting of the hornblendite + peridotite sandwich can account for the petrological and geochemical features observed from the alkali basalts
  • The metasomatic hornblendite veins may be common in the SSC lithospheric mantle, and they can serve as the mantle source of SSC alkali basalts
Methods
  • Whole-rock major-trace elements After petrographic examination, 18 fresh samples were selected, crushed to powders of meshes in agate mortars.
  • Analytical precision is better than 2-5%, estimated from repeated analyses of two standards.
  • The detailed sample-digesting procedure for ICP-MS analyses are the same as description by Liu et al [2008a].
  • Four standards were used to monitor the analytical quality, and the analytical precision for most trace elements is better than ±5%
Results
  • In order to decipher the origin of alkali basalts in the West Qinling orogen, the authors have extended the geochemical data from these analyzed in this study to those in the literature.
  • Zircon U-Pb isotope data for twenty analyses yield a weighted 206Pb/238U age of 101 ± 1 Ma (MSWD = 0.92) for the Ganjia basalt.
  • These zircon grains exhibit high Th/U ratios of 0.13 to 0.83 (Supplementary
Conclusion
  • The Mesozoic alkali basalts from the West Qinling orogen mainly erupted at 101 to 112 Ma, remarkably later than the Triassic continental collision
  • They exhibit significant enrichment of melt-mobile incompatible trace elements such as LILE and LREE, and no depletion of melt-immobile incompatible trace elements such as Nb and Ta. They exhibit significant enrichment of melt-mobile incompatible trace elements such as LILE and LREE, and no depletion of melt-immobile incompatible trace elements such as Nb and Ta
  • This is similar to the common OIB but significantly different from normal MORB, suggesting their origination from fertile SCLM.
  • The orogenic alkali basalts provide valuable information about the lithology of local SCLM domains above fossil subduction channels, and record the recycling of subducted fossil oceanic crust
Summary
  • Introduction:

    Alkali basalts commonly occur in the interior of plate, typically on updomed and rifted continental crust and on oceanic islands (OIB)
  • They are generally characterized by high contents of alkali metals and normative nepheline in their CIPW norms [Hofmann 1997; Niu and O’Hara, 2003; Niu, 2008; Pilet et al, 2008, 2011; Ma et al, 2011].
  • The major issue for the petrogenesis of alkali basalts is to recognize the contribution from different mantle lithologies and their origin [Sobolev et al, 2005; Niu, 2008; Pilet et al, 2008, 2011]
  • Methods:

    Whole-rock major-trace elements After petrographic examination, 18 fresh samples were selected, crushed to powders of meshes in agate mortars.
  • Analytical precision is better than 2-5%, estimated from repeated analyses of two standards.
  • The detailed sample-digesting procedure for ICP-MS analyses are the same as description by Liu et al [2008a].
  • Four standards were used to monitor the analytical quality, and the analytical precision for most trace elements is better than ±5%
  • Results:

    In order to decipher the origin of alkali basalts in the West Qinling orogen, the authors have extended the geochemical data from these analyzed in this study to those in the literature.
  • Zircon U-Pb isotope data for twenty analyses yield a weighted 206Pb/238U age of 101 ± 1 Ma (MSWD = 0.92) for the Ganjia basalt.
  • These zircon grains exhibit high Th/U ratios of 0.13 to 0.83 (Supplementary
  • Conclusion:

    The Mesozoic alkali basalts from the West Qinling orogen mainly erupted at 101 to 112 Ma, remarkably later than the Triassic continental collision
  • They exhibit significant enrichment of melt-mobile incompatible trace elements such as LILE and LREE, and no depletion of melt-immobile incompatible trace elements such as Nb and Ta. They exhibit significant enrichment of melt-mobile incompatible trace elements such as LILE and LREE, and no depletion of melt-immobile incompatible trace elements such as Nb and Ta
  • This is similar to the common OIB but significantly different from normal MORB, suggesting their origination from fertile SCLM.
  • The orogenic alkali basalts provide valuable information about the lithology of local SCLM domains above fossil subduction channels, and record the recycling of subducted fossil oceanic crust
Tables
  • Table1: Zircon LA-ICPMS U-Pb isotope data for alkali basalts from West Qinling
  • Table2: A summary of whole-rock major and trace elements, zircon U-Pb ages, whole-rock
  • Table3: Zircon LA-MC-ICPMS Lu-Hf isotope data for alkali basalts from West Qinling
  • Table4: Source compositions, source and melt modes, mineral-melt partition coefficients used in partial melting modeling for the hornblendite + peridotite sandwich
Download tables as Excel
Funding
  • Data supporting Figures 2-9 are avaiable in Supplementary Tables S1-S4
  • This study was supported by grants from the Natural Science Foundation of China (41125012, 41221062) and by the Fundamental Funds for the Central Universities (WK2080000032, WK2080000054)
Study subjects and analysis
fresh samples: 18
3.1. Whole-rock major-trace elements After petrographic examination, 18 fresh samples were selected, crushed to powders of meshes in agate mortars. Whole-rock major elements were measured on fused glass discs by X-ray fluorescence spectrometer (XRF) at ALS Chemex Company (Guangzhou, China)

Reference
  • Balcaen, L., Schrijver, I.D., Moens, L. and Vanhaecke, F. (2005), Determination of the 87Sr/86Sr isotope ratio in USGS silicate reference materials by multi-collector ICP-mass spectrometry. Inter. J. Mass Spectr. 242, 251-255.
    Google ScholarLocate open access versionFindings
  • Blichert-Toft, J. and Albarède, F. (1997), The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 148, 243-258.
    Google ScholarLocate open access versionFindings
  • Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O'Reilly, S.Y. and Powell, W. (2007), Amphiboles from suprasubduction and intraplate lithosphericmantle. Lithos 99, 68-84.
    Google ScholarLocate open access versionFindings
  • Dasgupta, R., Hirschmann, M.M. and Smith, N.D. (2007), Partial melting experiments of peridotite+CO2 at 3 GPa and genesis of alkalic ocean island basalts. J. Petrol. 48, 2093-2124.
    Google ScholarLocate open access versionFindings
  • Defant, M. J. and Drummond, M. S. (1990), Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347, 662-665
    Google ScholarLocate open access versionFindings
  • Dilek, Y. and Altunkaynak, S. (2007), Cenozoic crustal evolution and mantle dynamics of postcollisional magmatism in western Anatolia. Inter. Geol. Rev. 49, 431-453.
    Google ScholarLocate open access versionFindings
  • Ding, Y., Yu, X.-H., Mo, X.-X., Li, X.-W., Huang, X.-F. and Wei, P. (2013), Geochronology, geochemistry and petrogenesis of the Hongqiang basalts from Northeast Qinghai-Tibetan Plateau. Earth Sci. Front. 20, 180-191
    Google ScholarLocate open access versionFindings
  • Dong, Y., Zhang, G., Neubauer, F., Liu, X., Genser, J. and Hauzenberger, C. (2011) Tectonic evolution of the Qinling orogen, China: Review and synthesis. J. Asian Earth Sci. 41, 213-237.
    Google ScholarLocate open access versionFindings
  • Downes, H., Beard, A. and Hinton, R. (2004), Natural experimental charges: an ion-microprobe study of trace element distribution coefficients in glass-rich hornblendite and clinopyroxenite xenoliths. Lithos 75, 1-17.
    Google ScholarLocate open access versionFindings
  • Downes, H. (2007) Origin and significance of spinel and garnet pyroxenites in the shallow lithospheric mantle: ultramafic massifs in orogenic belts in Western Europe and NW Africa. Lithos 99, 1-24.
    Google ScholarLocate open access versionFindings
  • Elhlou, S., Belousova, E., Griffin, W.L., Pearson, N.J. and O'Reilly, S.Y. (2006), Trace element and isotopic composition of GJ red zircon standard by laser ablation. Geochim. Cosmochim. Acta 70, A158, doi:10.1016/j.gca.2006.06.1383.
    Locate open access versionFindings
  • Fan, L.Y., Wang, Y.J., Li, X.Y. and Li, C. W. (2007a), Geochemical characteristics of late mesozoic mafic volcanic rocks from Westem Qinling and its tectonic implications. Geotect Metal 31, 471-481 Fan, L.Y., Wang, Y.J. and Li, X.Y. (2007b), Geochemical characteristics of late mesozoic mafic volcanic rocks from Westem Qinling and its tectonic implications. J. Mineral. Petrol. 27, 63-72 Feng, Y., Cao, X., Zhang, E., Hu, Y., Pan, X., Yang, J., Jia, Q. and Li,W. (2002), Structure, Orogenic Processes and Geodynamic of the Western Qinling Orogen. Xi'an Map Press, Xi'an, p. 263.
    Google ScholarLocate open access versionFindings
  • Fu, B., Zheng, Y.F. and Touret, J.L.R. (2002), Petrological, isotopic and fluid inclusion studies of eclogites from Sujiahe, NW Dabie Shan (China). Chem. Geol. 187, 107-128.
    Google ScholarLocate open access versionFindings
  • Furman, T. and Graham, D. (1999), Erosion of lithospheric mantle beneath the East African Rift system: geochemical evidence from the Kivu volcanic province. Lithos 48, 237-262.
    Google ScholarLocate open access versionFindings
  • Foley, S.F., Jackson, S.E., Fryer, J.D. and Greenough, G.A.J. (1996), Trace element partition coefficients for clinopyroxene and phlogophite in an alkaline lamprophyre from Newfoundland by LAM-ICP-MS. Geochim. Cosmochim. Acta 60, 629-638.
    Google ScholarLocate open access versionFindings
  • Frost, D.J. (2006) The stability of hydrous mantle phases. Rev. Mineral. Geochem. 62, 243-271.
    Google ScholarLocate open access versionFindings
  • Griffin, W.L., Wang, X., Jackson, S.E., Pearson, N.J., O'Reilly, S.Y., Xu, X. and Zhou, X. (2002), Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos 61, 237-269.
    Google ScholarLocate open access versionFindings
  • Hacker, B.R., Ratschbacher, L. and Liou, J.G. (2004), Subduction, collision, and exhumation in the Qinling-Dabie Orogen. J. Geol. Soc. London 226, 157-175.
    Google ScholarLocate open access versionFindings
  • Haase, K. M., Goldschmidt, B. and Garbe-Schonberg, D. (2004). Petrogenesis of Tertiary continental intra-plate lavas from the Westerwald region, Germany. J. Petrol. 45, 883-905.
    Google ScholarLocate open access versionFindings
  • Herzberg, C. (2011), Identification of source lithology in the Hawaiian and Canary islands: implications for origins. J. Petrol. 52, 113-146.
    Google ScholarLocate open access versionFindings
  • Hirose, K. and Kushiro, I. (1993), Partial melting of dry peridotites at high pressures: Determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett. 114, 477-489.
    Google ScholarLocate open access versionFindings
  • Hirose, K. (1997), Partial melt compositions of carbonated peridotite at 3 GPa and role of CO2 in alkali-basalt magma generation. Geophys. Res. Lett. 24, 2837-2840.
    Google ScholarLocate open access versionFindings
  • Hirschmann, M.M., Kogiso, T., Baker, M.B. and Stolper, E.M. (2003), Alkalic magmas generated by partial melting of garnet pyroxenite. Geology 31, 481-484.
    Google ScholarLocate open access versionFindings
  • Hofmann, A.W. (1997), Mantle geochemistry: The message from oceanic volcanism. Nature, 385, 219229.
    Google ScholarLocate open access versionFindings
  • Iizuka, T. and Hirata, T. (2005), Improvements of precision and accuracy in in situ Hf isotope microanalysis of zircon using the laser ablation-MC-ICPMS technique. Chem. Geol. 220, 121-137.
    Google ScholarLocate open access versionFindings
  • Ito, E., White, W. M. and Gopel, C. (1987), The O, Sr, Nd and Pb Isotope Geochemistry of Morb. Chem. Geol. 62,157-176 Jung, S., Vieten, K., Romer, R.L., Mezger, K., Hoernes, S. and Satir, M. (2012), Petrogenesis of Tertiary Alkaline Magmas in the Siebengebirge, Germany. J. Petrol. 53, 2381-2409.
    Google ScholarLocate open access versionFindings
  • Kelemen, P. B., Shimizu, N. and Dunn, T. (1993), Relative depletion of niobium in some arc magmas and the continental crust: partitioning of K, Nb, La and Ce during melt/rock reaction in the upper mantle. Earth Planet. Sci. Lett. 120, 111-134.
    Google ScholarLocate open access versionFindings
  • Kelemen, P.B., Hanghøj, K.and Greene, A.R. (2003), One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust, in The Crust, edited by R. L. Rudnick, pp. 593-659, Elsevier, New York. Kelley, K. A., Plank, T., Ludden, J. and Staudigel, H. (2003), Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem. Geophy. Geosyst. 4, doi:10.1029/2002GC000435.
    Locate open access versionFindings
  • Keshav, S., Gudfinnsson, G. H., Sen, G. and Fei, Y. (2004), Highpressure melting experiments on garnet clinopyroxenite and the alkalic to tholeiitic transition in ocean-island basalts. Earth Planet. Sci. Lett. 223, 365-379.
    Google ScholarLocate open access versionFindings
  • Kogiso, T., Hirschmann, M.M. and Frost, D.J. (2003), High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet. Sci. Lett. 216, 603-617.
    Google ScholarLocate open access versionFindings
  • Kogiso, T., Hirschmann, M. M. and Pertermann, M. (2004), Highpressure partial melting of mafic lithologies in the mantle. J. Petrol. 45, 2407-2422.
    Google ScholarLocate open access versionFindings
  • Kushiro, I. (1996), Partial melting of a fertile mantle peridotite at high pressures: An experimental study using aggregates of diamond. In: Basu, A., Hart, S. (eds) Earth Processes: Reading the Isotopic Code. Geophy. Monograph, American Geophys. Union 95, 109-122. LaTourrette,T., Hervig, R. L. and Holloway, J. R. (1995), Trace elementpartitioning between amphibole, phlogopite, and basanite melt. Earth Planet Sci. Let. 135, 13-30.
    Google ScholarLocate open access versionFindings
  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A. and Zanettin, B. (1986), A chemical classification of volcanic rocks based on the total alkali-silica diagram. J. Petrol. 27, 745-750.
    Google ScholarLocate open access versionFindings
  • Le Roux, V., Lee, C.T.A. and Turner, S.J. (2010) Zn/Fe systematics in mafic and ultramafic systems: Implications for detecting major element heterogeneities in the Earth’s mantle. Geochim. Cosmochim. Acta 74, 2779-2796.
    Google ScholarLocate open access versionFindings
  • Le Roux, V., Dasgupta, R. and Lee, C.T.A. (2011), Mineralogical heterogeneities in the Earth's mantle: Constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth Planet. Sci. Lett. 307, 395-408.
    Google ScholarLocate open access versionFindings
  • Lee, C.-Y., Tsai, J.-H., Ho, H.-H., Yang, T.F., Chung, S.-L and Chen, C.-H. (1997), Quantitative analysis in rock samples by an X-ray fluorescence spectrometer. I. Major elements. In: Abstract Volume for Annual Meeting of the Geological Society of China, pp. 418-420.
    Google ScholarFindings
  • Lee, C.-T.A., Luffi, P., Le Roux, V., Dasgupta, R., Albaréde, F. and Leeman, W.P. (2010), The redox state of arc mantle using Zn/Fe systematics. Nature 468, 681-685.
    Google ScholarLocate open access versionFindings
  • Li, S.G., Chen, Y., Cong, B.L., Zhang, Z., Zhang, R., Liou, D., Hart, S.R. and Ge, N. (1993), Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes. Chem. Geol. 109, 70-89.
    Google ScholarLocate open access versionFindings
  • Li, X.-W., Mo, X.-X., Yu, X.-H., Ding, Y., Huang, X.-F., Wei, P. and He, W.-Y. (2013a), Geochronological, geochemical and Sr-Nd-Hf isotopic constraints on the origin of the Cretaceous intraplate volcanism in West Qinling, Central China: Implications for asthenosphere–lithosphere interaction. Lithos 177, 381-401.
    Google ScholarLocate open access versionFindings
  • Li, X.-W., Mo, X.-X., Yu, X.-H., Ding, Y., Huang, X.-F., Wei, P. and He, W.-Y. (2013b), Petrology and geochemistry of the early Mesozoic pyroxene andesites in the Maixiu Area, West Qinling, China: Products of subduction or syn-collision? Lithos 172-173, 158-174.
    Google ScholarLocate open access versionFindings
  • Liu, Y.S., Zong, K. Q., Kelemen, P. B. and Gao, S. (2008a), Geochemistry and magmatic history of eclogites and ultramafic rocks from the Chinese continental scientific drill hole: Subduction and ultrahigh-pressure metamorphism of lower crustal cumulates. Chem. Geol. 247, 133-153.
    Google ScholarLocate open access versionFindings
  • Liu, Y.S., Hu, Z. C., Gao, S., Günther, D., Xu, J., Gao, C.G. and Chen, H.H. (2008b), In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chem. Geol. 257, 34-43.
    Google ScholarLocate open access versionFindings
  • Liu, Y.S., Gao, S., Hu, Z.C., Gao, C., Zong, K., and Wang, D. (2010), Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. J. Petrol. 51, 537-571.
    Google ScholarLocate open access versionFindings
  • Lu, X.X. (1999), Tectonic Map of Granitoids in Qinling. Xi’an Geological Publishing House, Xi’an.
    Google ScholarFindings
  • Ludwig, K. R. (2003), ISOPLOT 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronology Center, California.
    Google ScholarFindings
  • Ma, G.S.-K., Malpas, J., Xenophontos, C. and Chan, G.H.-N. (2011), Petrogenesis of latest Miocene-Quaternary continental intraplate volcanism along the northern Dead Sea Fault System (Al Ghab-Homs Volcanic Field), western Syria: evidence for lithosphereasthenosphere interaction. J. Petrol. 52, 401-430.
    Google ScholarLocate open access versionFindings
  • Ma, G.S.K., Malpas, J., Suzuki, K., Lo, C.-H., Wang, K.-L., Iizuka, Y. and Xenophontos, C. (2013), Evolution and origin of the Miocene intraplate basalts on the Aleppo Plateau, NW Syria. Chem. Geol. 335, 149-171.
    Google ScholarLocate open access versionFindings
  • Malaspina, N., Hermann, J., Scambelluri, M. and Compagnoni, R. (2006), Polyphase inclusions in garnet-orthopyroxenite (Dabie Shan, China) as monitors for metasomatism and fluid-related trace element transfer in subduction zone peridotite. Earth Planet. Sci. Lett. 249, 173-187.
    Google ScholarLocate open access versionFindings
  • McDonough,W. F. and Sun, S. S. (1995), The composition of the Earth. Chem. Geol. 120, 223-253.
    Google ScholarLocate open access versionFindings
  • Meng, Q.R. and Zhang, G.W. (1999), Timing of collision of the North and South China blocks: controversy and reconciliation. Geology 27, 1-96.
    Google ScholarLocate open access versionFindings
  • Meng, Q. R., and G. W. Zhang (2000), Geologic framework and tectonic evolution of the
    Google ScholarLocate open access versionFindings
  • Meng, Q.-R.,Wang, E. and Hu, J.-M. (2005), Mesozoic sedimentary evolution of the northwest Sichuan basin: implication for continued clockwise rotation of the South China block. Geol. Soc. America Bull. 117, 396-410.
    Google ScholarLocate open access versionFindings
  • Münker, C., Weyer, S., Scherer, E. and Mezger, K. (2001), Separation of high field strength elements (Nb, Ta, Zr, Hf) and Lu from rock samples for MC-ICPMS measurements. Geochem. Geophy Geosyst. 2, 1064-1083. Niu,Y. and O’Hara, M. J. (2003), Origin of ocean island basalts: a new perspective from petrology, geochemistry, and mineral physics considerations. J. Geophy. Res. 108, 2209, doi:10.1029/2002JB002048. Niu,Y. (2008), The origin of alkaline lavas. Science 320, 883-884 Niu, Y., Wilson, M., Humphreys, E.R. and O'Hara, M.J. (2011), The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. J. Petrol. 52, 1443-1468.
    Locate open access versionFindings
  • Pertermann, M. and Hirschmann, M.M., (2003), Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa; constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophy. Res. 108 (B2), 2125, doi:10.1029/2000JB000118.
    Locate open access versionFindings
  • Pilet, S., Baker, M.B. and Stolper, E.M. (2008), Metasomatized lithosphere and the origin of alkaline lavas. Science 320, 916-919.
    Google ScholarLocate open access versionFindings
  • Pilet, S., Baker, M.B., Muntener, O. and Stolper, E.M. (2011), Monte Carlo simulations of metasomatic enrichment in the lithosphere and implications for the source of alkaline basalts. J. Petrol. 52, 1415-1442.
    Google ScholarLocate open access versionFindings
  • Plank, T. and Langmuir, C. H. (1998), The chemical composition of subducting sediment and its consequences for the crust and mantle. Chem. Geol. 145, 323-394.
    Google ScholarLocate open access versionFindings
  • Powell, W., Zhang, M., O'Reilly, S.Y. and Tiepolo, M. (2004), Mantle amphibole trace-element and isotopic signatures trace multiple metasomatic episodes in lithospheric mantle, western Victoria, Australia. Lithos 75, 141-171.
    Google ScholarLocate open access versionFindings
  • Prouteau, G., Scaillet, B., Pichavant, M. and Maury, R. (2001), Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197-200.
    Google ScholarLocate open access versionFindings
  • Prytulak, J. and Elliott, T. (2007), TiO2 enrichment in ocean island basalts. Earth Planet. Sci. Lett. 263, 388-403.
    Google ScholarLocate open access versionFindings
  • Qin, J. F., S. C. Lai and Y. J. Li (2008), Slab breakoff model for the Triassic post-collisional adakitic granitoids in the Qinling orogen, central China: Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb isotopic constraints, Inter. Geol. Rev. 50, 1080-1104, doi:10.2747/0020-6814.50.12.1080.
    Locate open access versionFindings
  • Qin, J. F., S. C. Lai, G. Rodney, C. R. Diwu, Y. J. Ju, and Y. F. Li (2009), Geochemical evidence for origin of magma mixing for the Triassic monzonitic granite and its enclaves at Mishuling in the Qinling orogen (central China), Lithos, 112, 259-276.
    Google ScholarLocate open access versionFindings
  • Rapp, R.P., Shimizu, N., Norman, M.D. and Applegate, G.S. (1999), Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem. Geol. 160, 335-356.
    Google ScholarLocate open access versionFindings
  • Rapp, R.P., Norman, M.D., Laporte, D., Yaxley, G.M., Martin, H. and Foley, S.F. (2010), Continent formation in the Archean and chemical evolution of the cratonic lithosphere: melt-rock reaction experiments at 3-4 GPa and petrogenesis of Archean Mg-diorites (Sanukitoids). J. Petrol. 51, 1237-1266.
    Google ScholarLocate open access versionFindings
  • Ringwood, A.E. (1990), Slab-mantle interactions: 3. Petrogenesis of intraplate magmas and structure of the upper mantle. Chem. Geol. 82, 187-207.
    Google ScholarLocate open access versionFindings
  • Salters, V.J.M. and Stracke, A. (2004), Composition of the depleted mantle. Geochem.
    Google ScholarLocate open access versionFindings
  • Scherer, E., Munker, C. and Mezger, K. (2001), Calibration of the lutetium-hafnium clock.
    Google ScholarFindings
  • Schmidt, M. W. and Poli, S. (2003), Generation of mobile components during subduction of oceanic crust. Treatise on Geochemistry 3, 567-591.
    Google ScholarLocate open access versionFindings
  • Sobolev, A.V. (2005), An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590-597 Sobolev, S.V., Sobolev, A.V., Kuzmin, D.V., Krivolutskaya, N.A., Petrunin, A.G., Arndt, N.T., Radko, V.A. and Vasiliev, Y.R. (2011), Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312-316.
    Google ScholarLocate open access versionFindings
  • Stracke, A. (2012), Earth's heterogeneous mantle: A product of convection-driven interaction between crust and mantle. Chem. Geol. 330-331, 274-299.
    Google ScholarLocate open access versionFindings
  • Straub, S. M., Goldstein, S. L., Class, C., Schmidt, A. and Gomez-Tuena, A. (2010), Slab and mantle controls on the Sr-Nd-Pb-Hf isotope evolution of the post 42 Ma Izu-Bonin volcanic arc. J. Petrol. 51, 993-1026.
    Google ScholarLocate open access versionFindings
  • Sun S.-s. and McDonough, W.F. (1989), Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol. Soc. London Spec. Pub. 42, 313-345.
    Google ScholarLocate open access versionFindings
  • Takahashi, E., and Kushiro, I. (1983), Melting of a dry peridotite at high pressures and basalt magma genesis. American Mineral. 68, 859-879.
    Google ScholarLocate open access versionFindings
  • Tiepolo, M., Oberti, R., Zanetti, A., Vannucci, R. and Foley, S.F. (2007), Trace-element partitioning between amphibole and silicate melt. Rev. Mineral. Geochem. 67, 417-452.
    Google ScholarLocate open access versionFindings
  • Walter, M.J. (1998), Melting of garnet peridotite and the origin of komatiite and depleted lithosphere: J. Petrol. 39, 29-60.
    Google ScholarLocate open access versionFindings
  • Wang, X.X., Wang, T., Jahn, B.M., Hu, N.G. and Chen, W. (2007), Tectonic significance of
    Google ScholarFindings
  • Wang, T., Ni, P., Sun, W., Zhao, K. and Wang, X. (2011a), Zircon U-Pb ages of granites at Changba and Huangzhuguan in western Qinling and implications for source nature. Chin. Sci. Bull. 56, 659-669.
    Google ScholarLocate open access versionFindings
  • Wang, X.X., Wang, T., Qi, Q.J. and Li, S. (2011b), Temporal and spatial variations, origin evolvement and their tectonic significance of the Late Mesozoic granites in Qinling, central China. Acta Petrol. Sin. 27(6), 1573-1593 Wang, X.X., Wang, T. and Zhang, C. (2013), Neoproterozoic, Paleozoic, and Mesozoic granitoid magmatism in the Qinling Orogen, China: Constraints on orogenic process. J. Asian Earth Sci. 72, 129-151.
    Google ScholarLocate open access versionFindings
  • Wasylenki, L. E., Baker, M. B., Kent, A. J. R. and Stolper, E. M. (2003), Near-solidus melting of the shallow upper mantle: partial melting experiments on depleted peridotite. J. Petrol. 44,1163-1191.
    Google ScholarLocate open access versionFindings
  • Weis, D., Kieffer, B., Maerschalk, C., Barling, J., Jong, J.D., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M. and Mahoney, J.B. (2006), High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem. Geophy. Geosyst. 7, Q08006, doi:10.1029/2006GC001283.
    Locate open access versionFindings
  • Weis, D., Kieffer, B., Hanano, D., Nobre, Silva, I., Barling, J., Pretorius, W., Maerschalk, C. and Mattielli, N. (2007), Hf isotope compositions of U.S. Geological Survey reference materials. Geochem. Geophy. Geosyst. 8, Q06006, doi:10.1029/2006GC001473.
    Locate open access versionFindings
  • Wiedenbeck, M., Alle, P., Corfu, F., Griffin, W. L., Meier, M., Oberli, F., Quadt, A. V., Roddick, J. C. and Spiegel, W. (1995), Three natural zircon standards for U-Th-Pb, Lu-Hf, trace element and REE analyses. Geostand. Geoanal. Res. 19, 1-23.
    Google ScholarLocate open access versionFindings
  • Woodhead, J.D. and Hergt, J.M. (2005), Preliminary appraisal of seven natural zircon reference materials for in situ Hf isotope determination. Geostand. Geoanal. Res. 29, 183-195.
    Google ScholarLocate open access versionFindings
  • Wu, F.-Y., Yang, Y.-H., Xie, L.-W., Yang, J.-H. and Xu, P. (2006), Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem. Geol. 234, 105-126.
    Google ScholarLocate open access versionFindings
  • Wu, Y.-B. and Zheng, Y.-F. (2013), Tectonic evolution of a composite collision orogen: An overview on the Qinling-Tongbai-Hong'an-Dabie-Sulu orogenic belt in central China. Gondwana Res. 23, 1402-1428.
    Google ScholarLocate open access versionFindings
  • Xu, P., Wu, F.Y., Xie, L.W. and Yang, Y.H. (2004), Hf isotopic compositions of the standard zircons for U-Pb dating. Chin. Sci. Bull. 49, 1642-1648.
    Google ScholarLocate open access versionFindings
  • Xu, Z., Zhao, Z.-F. and Zheng, Y.-F. (2012), Slab-mantle interaction for thinning of cratonic lithospheric mantle in North China: Geochemical evidence from Cenozoic continental basalts in central Shandong. Lithos 146-147, 202-217.
    Google ScholarLocate open access versionFindings
  • Xu, Z., Zheng, Y.-F.,, He, H.-Y. and Zhao, Z.-F. (2014), Phenocryst He-Ar isotopic and whole-rock geochemical constraints on the origin of crustal components in the mantle source of Cenozoic continental basalt in eastern China. J. Volcanol. Geotherm. Res. 272, 99–110.
    Google ScholarLocate open access versionFindings
  • Yang, J.-H., Chung, S.-L., Zhai, M.-G. and Zhou, X.-H. (2004), Geochemical and Sr–Nd–Pb isotopic compositions of mafic dikes from the Jiaodong Peninsula, China: evidence for vein-plus-peridotite melting in the lithospheric mantle. Lithos 73, 145-160.
    Google ScholarLocate open access versionFindings
  • Yang, Y.H., Zhang, H., Chu, Z., Xie, L. and Wu, F.Y. (2010), Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr and Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. Inter. J. Mass Spectr. 290, 120-126.
    Google ScholarLocate open access versionFindings
  • Yang, Y.H., Chu, Z.Y., Wu, F.Y., Xie, L.W. and Yang, J.H. (2011a), Precise and accurate determination of Sm, Nd concentrations and Nd isotopic compositions in geological samples by MC-ICP-MS. J. Analyt. Atomic Spectr. 26, 1237-1244.
    Google ScholarLocate open access versionFindings
  • Yang, Y.H., Wu, F.Y., Xie, L.W., Yang, J.H. and Zhang, Y.B. (2011b), High-precision direct determination of the 87Sr/86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively-coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 66, 656-660.
    Google ScholarLocate open access versionFindings
  • Yang, Y.H., Wu, F.Y., Liu, Z.C., Chu, Z.Y., Xie, L.W. and Yang, J.H. (2012), Evaluation of Sr chemical purification technique for natural geological samples using common cation-exchange and Sr-specific extraction chromatographic resin prior to MC-ICP-MS or TIMS measurement. J. Analyt. Atomic Spectr. 27: 516-522.
    Google ScholarLocate open access versionFindings
  • Yaxley, G.M. and Green, D.H. (1998), Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweizerische Mineral. Petrol. Mitteilung 78, 243-255.
    Google ScholarLocate open access versionFindings
  • Yu, X.H., Mo, X.X., Zhao, Z.D., He, W.Y. and Li, Y. (2011), Cenozoic bimodal volcanic rocks of the West Qinling: Implication for the genesis and nature of the rifting of north-south tectonic belt. Acta Petrol. Sin. 27(7):2195-2202 Zhao, Z.-F., Dai, L.-Q. and Zheng, Y.-F. (2013), Postcollisional mafic igneous rocks record crust-mantle interaction during continental deep subduction. Scientific Reports 3, doi:10.1038/srep03413
    Locate open access versionFindings
  • Zhang, E. P., D. Y. Niu, Y. G. Hou, Y. G., Li and L. F., Zhang (1994), Geological map of Qinling-Daba Mountains and adjacent of the People's Republic of China,Gansu province, Tethyan Geology.
    Google ScholarFindings
  • Zhang, G. W., B. R. Zhang, X. C. Yuan, and J. Y. Chen (2001), Qinling Orogenic Belt and
    Google ScholarLocate open access versionFindings
  • Zhang, H. F., L. L. Jin, L. Zhang, and N. Harris (2007), Geochemical and Pb-Sr-Nd isotopic compositions of granitoids from western Qinling belt: Constraints on basement nature and tectonic affinity, Sci. China Ser. D, 50, 184-196.
    Google ScholarLocate open access versionFindings
  • Zhang, C.L., Wang, T. and Wang, X.X. (2008), Origin and tectonic setting of the Early Mesozoic granitoids in Qinling orogenic belt. Geol. J. China Univ. 14(3), 304-316 Zhang, J.-J., Zheng, Y.-F. and Zhao, Z.-F. (2009), Geochemical evidence for interaction between oceanic crust and lithospheric mantle in the origin of Cenozoic continental basalts in east-central China. Lithos 110, 305-326. Zheng,Y.-F. (2012), Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol. 328, 5-48.
    Google ScholarLocate open access versionFindings
  • Zheng, Y.-F., Xiao, W.-J. and Zhao, G.-C. (2013), Introduction to tectonics of China. Gondwana Res. 23, 1189-1206 Zhu, L.-m., Zhang, G.-w., Chen, Y.-j., Ding, Z.-j., Guo, B., Wang, F. and Lee, B. (2011), Zircon U-Pb ages and geochemistry of the Wenquan Mo-bearing granitioids in West Qinling, China: Constraints on the geodynamic setting for the newly discovered Wenquan Mo deposit. Ore Geol. Rev. 39, 46-62.
    Google ScholarLocate open access versionFindings
Your rating :
0

 

Tags
Comments