A new self-made digital slide scanner and microscope for imaging and quantification of fluorescent microspheres

Journal of Biomedical Graphics and Computing(2015)

引用 0|浏览8
暂无评分
摘要
Objective: A low-cost microscope slide scanner was constructed for the purpose of digital imaging of newborn piglet brain tissue and to quantify fluorescent microspheres in tissue. Methods: Using a standard digital single-lens reflex (DSLR) camera, fluorescent imaging of newborn piglet brain tissue was performed. A computer algorithm available for download was created to detect fluorescent microspheres in the brain tissue slides and to calculate regional cerebral blood flow (rCBF). The precision of the algorithm was tested by comparing with manual counting of the fluorescent microspheres. Finally, bright-field imaging was tested by adding light diffuser film. Results: Cost of the slide scanner was a fraction of the cost of a commercial slide scanner. The slide scanner was able to image a large number of tissue slides in a semiautomatic manner and provided a large field of view (FOV) of 101 mm 2 combined with a resolution of 2.9 μm. The mean difference (SD) between manual and automatic counts was in absolute numbers 0.32 (1.5) microspheres ranging from -5 to 5 microspheres per slide. The relative total difference between automatic and manual counts was -3.1%. Conclusions: A slide scanner was constructed and an automatic algorithm to detect fluorescent microspheres in tissue was developed and validated and showed an acceptable difference to “gold standard” manual counting. The slide scanner can be regarded as a low-cost alternative for researchers when digital slide imaging and quantification of fluorescent microspheres are needed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要