Enabling Computational Dynamics in Distributed Computing Environments Using a Heterogeneous Computing Template

Volume 4: 8th International Conference on Multibody Systems, Nonlinear Dynamics, and Control, Parts A and B(2011)

引用 2|浏览7
暂无评分
摘要
This paper describes a software infrastructure made up of tools and libraries designed to assist developers in implementing computational dynamics applications running on heterogeneous and distributed computing environments. Together, these tools and libraries compose a so called Heterogeneous Computing Template (HCT). The heterogeneous and distributed computing hardware infrastructure is assumed herein to be made up of a combination of CPUs and GPUs. The computational dynamics applications targeted to execute on such a hardware topology include many-body dynamics, smoothed-particle hydrodynamics (SPH) fluid simulation, and fluid-solid interaction analysis. The underlying theme of the solution approach embraced by HCT is that of partitioning the domain of interest into a number of sub-domains that are each managed by a separate core/accelerator (CPU/GPU) pair. Five components at the core of HCT enable the envisioned distributed computing approach to large-scale dynamical system simulation: (a) a method for the geometric domain decomposition and mapping onto heterogeneous hardware; (b) methods for proximity computation or collision detection; (c) support for moving data among the corresponding hardware as elements move from subdomain to subdomain; (d) numerical methods for solving the specific dynamics problem of interest; and (e) tools for performing visualization and post-processing in a distributed manner. In this contribution the components (a) and (c) of the HCT are demonstrated via the example of the Discrete Element Method (DEM) for rigid body dynamics with friction and contact. The collision detection task required in frictional-contact dynamics; i.e., task (b) above, is discussed separately and in the context of GPU computing. This task is shown to benefit of a two order of magnitude gain in efficiency when compared to traditional sequential implementations. Note: Reference herein to any specific commercial products, process, or service by trade name, trademark, manufacturer, or otherwise, does not imply its endorsement, recommendation, or favoring by the US Army. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Army, and shall not be used for advertising or product endorsement purposes.
更多
查看译文
关键词
software engineering,mechanical engineering,dynamics,equations of motion,high performance computing
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要