Antibody-based Detection of Escherichia coli O157:H7 and Salmonella enterica Serovar Typhimurium Grown in Low-shear Modeled Microgravity

Microgravity Science and Technology(2007)

引用 1|浏览11
暂无评分
摘要
With the advent of prolonged spaceflights, it is important to determine if antibody-based assays can be used to monitor food and water for bacterial contaminants. In the present work, a ground-based high aspect ratio vessel (HARV) was used to determine if low shear modeled microgravity (LSMMG) alters antibody-binding to E. coli O157:H7 and Salmonella enterica serovar Typhimurium. Antibody–bacteria binding was similar under LSMMG and normal gravity because there was no difference in amount of captured bacteria measured by colony forming units (CFU) between assays conducted in the HARV and a conventional roller flask. The ability of E. coli O157:H7 and Salmonella Typhimurium grown in LSMMG to bind specific antibodies was also studied. After incubations of 4, 18 or 36 h in the HARV or a shaking incubator, bacteria were harvested for enzyme-linked immunosorbent assays (ELISA). In the E. coli O157:H7 ELISA using a goat polyclonal primary antibody, LSMMG did not alter the linear range of detection (10 5 –10 7 cells/ml) nor the signal to noise ratio at any bacterial concentration. Although insignificant changes in signal to noise ratios were evident, LSMMG did not alter the range of detection (10 5 –10 7 cells/ml) for Salmonella Typhimurium in ELISAs using either a polyclonal or a monoclonal antibody. These results suggest that immunoassays may be used in spacecrafts because LSMMG does not have significant deleterious effects on antibody-binding to bacteria nor does it significantly alter surface antigens necessary for antibody-based methods.
更多
查看译文
关键词
Escherichia coli O157:H7,Salmonella Typhimurium
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要