Negative Bias-And-Temperature Stress-Assisted Activation Of Oxygen-Vacancy Hole Traps In 4h-Silicon Carbide Metal-Oxide-Semiconductor Field-Effect Transistors

JOURNAL OF APPLIED PHYSICS(2015)

引用 11|浏览4
暂无评分
摘要
We use hybrid-functional density functional theory-based Charge Transition Levels (CTLs) to study the electrical activity of near-interfacial oxygen vacancies located in the oxide side of 4H-Silicon Carbide (4H-SiC) power Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs). Based on the "amorphousness" of their local atomic environment, oxygen vacancies are shown to introduce their CTLs either within (permanently electrically active) or outside of (electrically inactive) the 4H-SiC bandgap. The "permanently electrically active" centers are likely to cause threshold voltage (V-th) instability at room temperature. On the other hand, we show that the "electrically inactive" defects could be transformed into various "electrically active" configurations under simultaneous application of negative bias and high temperature stresses. Based on this observation, we present a model for plausible oxygen vacancy defects that could be responsible for the recently observed excessive worsening of Vth instability in 4H-SiC power MOSFETs under high temperature-and-gate bias stress. This model could also explain the recent electrically detected magnetic resonance observations in 4H-SiC MOSFETs. (C) 2015 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要