Ferroelectric Functionality In Srtio3/Si Heterojunctions

H L Yu, Y Z Wu,X F Jiang,M Q Cai, L P Gu,G W Yang

JOURNAL OF APPLIED PHYSICS(2013)

引用 19|浏览11
暂无评分
摘要
By the first-principles calculations, various SrTiO3/Si interface architectures have been studied in this work and the computed results showed that the stable ferroelectricity can be realized in the SrTiO3/Si system. The Si/SrO interface architecture with the Si-O configuration showed predominately the ferroelectric nature and the height of the potential barrier between the negative and positive poled states (0.77 eV per interfacial unit cell). The presence of the covalent bond between the substrate Si and O of SrO layer adjacent to the substrate Si leads to the disappearance of the electronic dipoles at the interface, and the reason is that the Si-O configuration of the Si/SrO interface architecture exhibits ferroelectric nature. In order to further understand the influence of the interfacial bonding nature on the ferroelectricity of the oxide layer, the BaTiO3/Si heterojunction with the same interface architectures also have been studied. Indeed, the Si/BaO interface architecture with the Si-O configuration showed predominately the ferroelectric nature too. Certainly, a full SrO (or BaO) layer directly grown on the substrate Si is benefit to the realization of the ferroelectric functionality in the ferroelectric-Si heterojunction. These findings are useful for the understanding of the basic physics of the ferroelectric-Si heterojunction and the silicon-based functional oxide device design. (c) 2013 AIP Publishing LLC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要