Regulation Of Autophagy In Human Skeletal Muscle: Effects Of Exercise, Exercise Training And Insulin Stimulation

JOURNAL OF PHYSIOLOGY-LONDON(2016)

引用 69|浏览7
暂无评分
摘要
Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one-legged exercise, one-legged exercise training and subsequent insulin stimulation in exercised and non-exercised human muscle. Acute one-legged exercise decreased (P<0.01) lipidation of microtubule-associated protein 1A/1B-light chain 3 (LC3) (approximate to 50%) and the LC3-II/LC3-I ratio (approximate to 60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3-II/LC3-I ratio did not correlate with activation of 5AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5-aminoimidazole-4-carboxamide riboside (AICAR) in mouse muscle did not affect the LC3-II/LC3-I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3-II/LC3-I ratio (approximate to 80%) in muscle of the exercised and non-exercised leg in humans. This coincided with increased Ser-757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3-II/LC3-I ratio. In response to 3weeks of one-legged exercise training, the LC3-II/LC3-I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3-I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy-inhibiting effect of insulin.
更多
查看译文
关键词
bioinformatics,biomedical research
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要