CO-CBS-H2 S axis: From vascular mediator to cancer regulator.

MICROCIRCULATION(2016)

引用 16|浏览4
暂无评分
摘要
CO is a gaseous mediator generated by HO. Our previous studies revealed that CO generated from inducible HO-1 or from constitutive HO-2 modulates function of different heme proteins or enzymes through binding to their prosthetic ferrous heme to alter their structures, regulating biological function of cells and organs. Such CO-directed target macromolecules include sGC and CBS. In the liver, CO serves as a sinusoidal dilator through its action on sGC in hepatic stellate cells, while the same gas accounts for vasoconstrictor that inhibits H2S generated by CO-sensitive CBS in astrocytes. Since molecular O-2 is a substrate for HO, the latter mechanism contributes to hypoxic vasodilation in neurovascular units. We have recently uncovered that stress-inducible CO in and around cancer cells suppresses CBS to result in decreased methylation of PFKFB3, the enzyme regulating PFK-1, leading to a shift of glucose biotransformation from glycolysis toward pentose phosphate pathway; such a metabolic remodeling causes chemoresistance through increasing NADPH and reduced glutathione under stress conditions for cancer cells. This article reviews the intriguing networks of CO-sensitive metabolic regulatory mechanisms in microcirculation and cancer.
更多
查看译文
关键词
CO,soluble guanylate cyclase,cystathionine -synthase,cancer,chemoresistance,glutathione
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要