Knockdown of CABYR-a/b increases chemosensitivity of human non-small cell lung cancer cells through inactivation of Akt.

MOLECULAR CANCER RESEARCH(2014)

引用 19|浏览14
暂无评分
摘要
CABYR is a calcium-binding tyrosine phosphorylation-regulated protein that was identified as a novel cancer testis antigen in lung cancer in our previous study. However, the role of CABYR as a driver of disease progression or as a chemosensitizer is poorly understood. This study sought to investigate the relationship between the expression levels of CABYR-a/b, which are the two predominant isoforms of the five isoform proteins encoded by CABYR, and chemosensitivity in non-small cell lung cancer cells. We found that the short hairpin RNA-mediated knockdown of CABYR-a/b significantly inhibited the proliferation of NCI-H460 and A549 cells and resulted in the attenuation of Akt phosphorylation, which is constitutively active in lung cancer cells. The silencing of CABYR-a/b expression notably impacted the downstream components of the Akt pathways: decreasing the phospho-GSK-3 beta (Ser9) levels and increasing the expression of the p53 and p27 proteins. Furthermore, CABYR-a/b knockdown led to a significant increase in chemosensitivity in response to chemotherapeutic drugs and drug-induced apoptosis, both in vitro and in vivo. Conversely, the transient transfection of CABYR-a/b-depleted cells with constitutively active Akt partially restored the resistance to cisplatin and paclitaxel and significantly decreased the activation of GSK-3 beta and cleaved PARP. Taken together, our results suggest that the inhibition of CABYR-a/b is a novel method to improve the apoptotic response and chemosensitivity in lung cancer and that this cancer testis antigen is an attractive target for lung cancer drug development. (C)2013 AACR.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要