Feeling Small: Exploring the Tactile Perception Limits

SCIENTIFIC REPORTS(2013)

引用 210|浏览22
暂无评分
摘要
The human finger is exquisitely sensitive in perceiving different materials, but the question remains as to what length scales are capable of being distinguished in active touch. We combine material science with psychophysics to manufacture and haptically explore a series of topographically patterned surfaces of controlled wavelength, but identical chemistry. Strain-induced surface wrinkling and subsequent templating produced 16 surfaces with wrinkle wavelengths ranging from 300 nm to 90 μm and amplitudes between 7 nm and 4.5 μm. Perceived similarities of these surfaces (and two blanks) were pairwise scaled by participants and interdistances among all stimuli were determined by individual differences scaling (INDSCAL). The tactile space thus generated and its two perceptual dimensions were directly linked to surface physical properties – the finger friction coefficient and the wrinkle wavelength. Finally, the lowest amplitude of the wrinkles so distinguished was approximately 10 nm, demonstrating that human tactile discrimination extends to the nanoscale.
更多
查看译文
关键词
young adult,polymer chemistry,materials chemistry,touch,natural sciences,social sciences
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要