Characterization of entangling properties of quantum measurement via two-mode quantum detector tomography using coherent state probes.

OPTICS EXPRESS(2019)

引用 6|浏览0
暂无评分
摘要
Entangled measurement is a crucial tool in quantum technology. We propose a new entanglement measure of multi-mode detection, which estimates the amount of entanglement that can be created in a measurement. To illustrate the proposed measure, we perform quantum tomography of a two-mode detector that is comprised of two superconducting nanowire single photon detectors. Our method utilizes coherent states as probe states, which can be easily prepared with accuracy. Our work shows that a separable state such as a coherent state is enough to characterize a potentially entangled detector. We investigate the entangling capability of the detector in various settings. Our proposed measure verifies that the detector makes an entangled measurement under certain conditions, and reveals the nature of the entangling properties of the detector. Since the precise characterization of a detector is essential for applications in quantum information technology, the experimental reconstruction of detector properties along with the proposed measure will be key features in future quantum information processing. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要