In-situ subaqueous capping of mercury-contaminated sediments in a fresh-water aquatic system, Part I-Bench-scale microcosm study to assess methylmercury production.

Environmental Research(2013)

引用 5|浏览1
暂无评分
摘要
Bench-scale microcosm experiments were designed to provide a better understanding of the potential for Hg methylation in sediments from an aquatic environment. Experiments were conducted to examine the function of sulfate concentration, lactate concentration, the presence/absence of an aqueous inorganic Hg spike, and the presence/absence of inoculums of Desulfovibrio desulfuricans, a strain of sulfate-reducing bacteria (SRB) commonly found in the natural sediments of aquatic environments. Incubations were analyzed for both the rate and extent of (methylmercury) MeHg production. Methylation rates were estimated by analyzing MeHg and Hg after 2, 7, 14, 28, and 42 days. The production of metabolic byproducts, including dissolved gases as a proxy for metabolic utilization of carbon substrate, was also monitored. In all treatments amended with lactate, sulfate, Hg, and SRB, MeHg was produced (37ng/g-sediment dry weight) after only 48h of incubation and reached a maximum sediment concentration of 127ng/g-sediment dry weight after the 42 day incubation period. Aqueous phase production of MeHg was observed to be 10ng/L after 2 day, reaching a maximum observed concentration of 32.8ng/L after 14 days, and declining to 10.8ng/L at the end of the incubation period (42 day). The results of this study further demonstrates that, in the presence of an organic carbon substrate, sulfate, and the appropriate consortia of microorganisms, sedimentary Hg will be transformed into MeHg through bacterial metabolism. Further, this study provided the basis for evaluation of an in-situ subaqueous capping strategy that may limit (or potentially enhance) MeHg production.
更多
查看译文
关键词
Methylmercury,Mercury,Methylation,Microcosm,Sediment
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要