Switching transport through nanopores with pH-responsive polymer brushes for controlled ion permeability.

ACS applied materials & interfaces(2013)

引用 89|浏览3
暂无评分
摘要
Several nanoporous platforms were functionalized with pH-responsive poly(methacrylic acid) (PMAA) brushes using surface-initiated atom transfer radical polymerization (SI-ATRP). The growth of the PMAA brush and its pH-responsive behavior from the nanoporous platforms were confirmed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and atomic force microscopy (AFM). The swelling behavior of the pH-responsive PMAA brushes grafted only from the nanopore walls was investigated by AFM in aqueous liquid environment with pH values of 4 and 8. AFM images displayed open nanopores at pH 4 and closed ones at pH 8, which rationalizes their use as gating platforms. Ion conductivity across the nanopores was investigated with current-voltage measurements at various pH values. Enhanced higher resistance across the nanopores was observed in a neutral polymer brush state (lower pH values) and lower resistance when the brush was charged (higher pH values). By adding a fluorescent dye in an environment of pH 4 or pH 8 at one side of the PMAA-brush functionalized nanopore array chips, diffusion across the nanopores was followed. These experiments displayed faster diffusion rates of the fluorescent molecules at pH 4 (PMAA neutral state, open pores) and slower diffusion at pH 8 (PMAA charged state, closed pores) showing the potential of this technology toward nanoscale valve applications.
更多
查看译文
关键词
pH-responsive polymer brushes,poly(methacrylic acid),grafting from surfaces,atomic force microscopy,nanopores,ion gating
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要