Ligand access to the active site in Thermus thermophilus ba(3) and bovine heart aa(3) cytochrome oxidases.

BIOCHEMISTRY(2013)

引用 19|浏览11
暂无评分
摘要
Knowledge of the structure and dynamics of the ligand channel(s) in heme-copper oxidases is critical for understanding how the protein environment modulates the functions of these enzymes. Using photolabile NO and O-2 carriers, we recently found that NO and O-2 binding in Thermus thermophilus (Tt) ba(3) is similar to 10 times faster than in the bovine enzyme, indicating that inherent structural differences affect ligand access in these enzymes. Using X-ray crystallography, time-resolved optical absorption measurements, and theoretical calculations, we investigated ligand access in wild-type Tt ba(3) and the mutants, Y133W, T231F, and Y133W/T231F, in which tyrosine and threonine in the 02 channel of Tt ba(3) are replaced by the corresponding bulkier tryptophan and phenylalanine, respectively, present in the aa(3) enzymes. NO binding in Y133W and Y133W/T231F was found to be 5 times slower than in wild-type ba(3) and the T231F mutant. The results show that the Tt ba(3) Y133W mutation and the bovine W126 residue physically impede NO access to the binuclear center. In the bovine enzyme, there is a hydrophobic "way station", which may further slow ligand access to the active site. Classical simulations of diffusion of Xe to the active sites in ba(3) and bovine aa(3) show conformational freedom of the bovine F238 and the F231 side chain of the Tt ba(3) Y133W/T231F mutant, with both residues rotating out of the ligand channel, resulting in no effect on ligand access in either enzyme.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要