Neutrophil Gelatinase-Associated Lipocalin (Ngal) Predicts Response To Neoadjuvant Chemotherapy And Clinical Outcome In Primary Human Breast Cancer

PLOS ONE(2012)

引用 45|浏览9
暂无评分
摘要
In our previous work we showed that NGAL, a protein involved in the regulation of proliferation and differentiation, is overexpressed in human breast cancer (BC) and predicts poor prognosis. In neoadjuvant chemotherapy (NACT) pathological complete response (pCR) is a predictor for outcome. The aim of this study was to evaluate NGAL as a predictor of response to NACT and to validate NGAL as a prognostic factor for clinical outcome in patients with primary BC. Immunohistochemistry was performed on tissue microarrays from 652 core biopsies from BC patients, who underwent NACT in the GeparTrio trial. NGAL expression and intensity was evaluated separately. NGAL was detected in 42.2% of the breast carcinomas in the cytoplasm. NGAL expression correlated with negative hormone receptor (HR) status, but not with other baseline parameters. NGAL expression did not correlate with pCR in the full population, however, NGAL expression and staining intensity were significantly associated with higher pCR rates in patients with positive HR status. In addition, strong NGAL expression correlated with higher pCR rates in node negative patients, patients with histological grade 1 or 2 tumors and a tumor size,40 mm. In univariate survival analysis, positive NGAL expression and strong staining intensity correlated with decreased disease-free survival (DFS) in the entire cohort and different subgroups, including HR positive patients. Similar correlations were found for intense staining and decreased overall survival (OS). In multivariate analysis, NGAL expression remained an independent prognostic factor for DFS. The results show that in low-risk subgroups, NGAL was found to be a predictive marker for pCR after NACT. Furthermore, NGAL could be validated as an independent prognostic factor for decreased DFS in primary human BC.
更多
查看译文
关键词
immunohistochemistry,chemistry,proportional hazards models,engineering,medicine,multivariate analysis,predictive value of tests,physics,biology,acute phase proteins,lipocalins
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要