The 1a-Protein Of Respiratory Syncytial Virus Is An Integral Membrane-Protein Present As Multiple, Structurally Distinct Species

Journal of virology(1989)

引用 104|浏览2
暂无评分
摘要
The respiratory syncytial virus (RSV) 1A protein was previously identified as a 7.5-kilodalton (kDa) nonglycosylated species that, on the basis of its predicted sequence determined from the sequence of its mRNA, contains a hydrophobic central domain that was suggestive of membrane interaction. Here, four major, structurally distinct intracellular species of the 1A protein were identified in cells infected by RSV or by a recombinant vaccinia virus expressing the 1A gene. The four species of 1A were: (i) the previously described, nonglycosylated 7.5-kDa species that appeared to be the full-length, unmodified 1A protein; (ii) a nonglycosylated 4.8-kDa species that was carboxy-coterminal with the 7.5-kDa species and might be generated by translational initiation at the second AUG in the sequence; (iii) a 13- to 15-kDa species that contained one or two N-linked carbohydrate side chains of the high-mannose type; and (iv) a 21- to 30-kDa glycosylated species that appeared to be generated from the 13- to 15-kDa species by further modification of the N-linked carbohydrate. All four forms of the 1A protein were synthesized and processed on intracellular membranes, and several lines of biochemical evidence showed that all four species were integral membrane proteins. Thus, the 1A protein is a third RSV integral membrane protein and is present as such in both glycosylated and nonglycosylated forms. With the use of antiserum raised against a synthetic peptide representing the C terminus of the 1A protein, indirect immunofluorescence showed that the 1A protein was expressed at the cell surface. Antibody-antigen complexes formed at the surface of intact infected cells were immunoprecipitated, showing that the 7.5-kDa, 13- to 15-kDa, and 21- to 30-kDa, but not the 4.8-kDa, species, were accessible to extracellular antibodies. Thus, the 1A protein is a candidate to be a viral surface antigen. The small size, gene map location integral membrane association, and cell surface expression of the 1A protein strongly suggested that it is a counterpart to the SH protein that has been described for simian virus type 5. We suggest that, in the future, the RSV 1A protein be given the same designation, namely, SH.
更多
查看译文
关键词
amino acid sequence,molecular weight,glycoside hydrolases
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要